Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 22(5): e3002613, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38771730

RESUMEN

The Global Biodiversity Framework (GBF), signed in 2022 by Parties to the Convention on Biological Diversity, recognized the importance of area-based conservation, and its goals and targets specify the characteristics of protected and conserved areas (PCAs) that disproportionately contribute to biodiversity conservation. To achieve the GBF's target of conserving a global area of 30% by 2030, this Essay argues for recognizing these characteristics and scaling them up through the conservation of areas that are: extensive (typically larger than 5,000 km2); have interconnected PCAs (either physically or as part of a jurisdictional network, and frequently embedded in larger conservation landscapes); have high ecological integrity; and are effectively managed and equitably governed. These areas are presented as "Nature's Strongholds," illustrated by examples from the Congo and Amazon basins. Conserving Nature's Strongholds offers an approach to scale up initiatives to address global threats to biodiversity.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Conservación de los Recursos Naturales/métodos , Ecosistema , Animales , Congo
2.
Neural Dev ; 2: 7, 2007 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-17470283

RESUMEN

BACKGROUND: Proper neuronal function depends on forming three primary subcellular compartments: axons, dendrites, and soma. Each compartment has a specialized function (the axon to send information, dendrites to receive information, and the soma is where most cellular components are produced). In mammalian neurons, each primary compartment has distinctive molecular and morphological features, as well as smaller domains, such as the axon initial segment, that have more specialized functions. How neuronal subcellular compartments are established and maintained is not well understood. Genetic studies in Drosophila have provided insight into other areas of neurobiology, but it is not known whether flies are a good system in which to study neuronal polarity as a comprehensive analysis of Drosophila neuronal subcellular organization has not been performed. RESULTS: Here we use new and previously characterized markers to examine Drosophila neuronal compartments. We find that: axons and dendrites can accumulate different microtubule-binding proteins; protein synthesis machinery is concentrated in the cell body; pre- and post-synaptic sites localize to distinct regions of the neuron; and specializations similar to the initial segment are present. In addition, we track EB1-GFP dynamics and determine microtubules in axons and dendrites have opposite polarity. CONCLUSION: We conclude that Drosophila will be a powerful system to study the establishment and maintenance of neuronal compartments.


Asunto(s)
Encéfalo/citología , Compartimento Celular/fisiología , Diferenciación Celular/fisiología , Polaridad Celular/fisiología , Drosophila melanogaster/citología , Neuronas/citología , Animales , Axones/metabolismo , Axones/ultraestructura , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Dendritas/metabolismo , Dendritas/ultraestructura , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Larva/citología , Larva/crecimiento & desarrollo , Larva/metabolismo , Proteínas Asociadas a Microtúbulos/biosíntesis , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Modelos Animales , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/crecimiento & desarrollo , Cuerpos Pedunculados/metabolismo , Neuronas/metabolismo , Transporte de Proteínas/fisiología , Proteínas Recombinantes de Fusión/metabolismo
3.
Genetics ; 165(3): 1433-41, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14668392

RESUMEN

We describe a technique to tag Drosophila proteins with GFP at their native genomic loci. This technique uses a new, small P transposable element (the Wee-P) that is composed primarily of the green fluorescent protein (GFP) sequence flanked by consensus splice acceptor and splice donor sequences. We demonstrate that insertion of the Wee-P can generate GFP fusions with native proteins. We further demonstrate that GFP-tagged proteins have correct subcellular localization and can be expressed at near-normal levels. We have used the Wee-P to tag genes with a wide variety of functions, including transmembrane proteins. A genetic analysis of 12 representative fusion lines demonstrates that loss-of-function phenotypes are not caused by the Wee-P insertion. This technology allows the generation of GFP-tagged reagents on a genome-wide scale with diverse potential applications.


Asunto(s)
Elementos Transponibles de ADN , Proteínas de Drosophila/genética , Drosophila/genética , Genómica , Animales , Fusión Artificial Génica , Secuencia de Bases , Cartilla de ADN , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/genética , Proteínas Recombinantes de Fusión/genética , Fracciones Subcelulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA