Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Bone Jt Infect ; 6(8): 337-346, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34513571

RESUMEN

Introduction: Costs related to bone and joint infection (BJI) management are increasing worldwide, particularly due to the growing use of off-label antibiotics that are expensive treatments (ETs), in conjunction with increasing incidence of multi-drug-resistant pathogens. The aim of this study was to evaluate the whole costs related to these treatments during the patient route, including those attributed to the rehabilitation centre (RC) stay in one regional referral centre in France. The total annual cost of ETs for managing complex BJIs in France was then estimated. Material and methods: A prospective monocentric observational study was conducted from 2014 to 2019 in a referral centre for BJI management (CRIOAc - Centre de Référence des Infections OstéoArticulaires complexes). Costs related to expensive treatments ("old" ETs, i.e. ceftaroline, ertapenem, daptomycin, colistin, tigecycline, and linezolid and "new" ETs, defined as those used since 2017, including ceftobiprole, ceftazidime-avibactam, ceftolozane-tazobactam, tedizolid, and dalbavancin) were prospectively recorded. In all cases, the use of these ETs was validated during multidisciplinary meetings. Results: Of the 3219 patients treated, 1682 (52.3 %) received at least one ET, and 21.5 % of patients who received ET were managed in RCs. The overall cost of ETs remained high but stable (EUR 1 033 610 in 2014; EUR 1 129 862 in 2019), despite the increase of patients treated by ETs (from 182 in 2014 to 512 in 2019) and in the cumulative days of treatment (9739 to 16 191 d). Daptomycin was the most prescribed molecule (46.2 % of patients in 2014 and 56.8 % in 2019, with 53.8 % overall), but its cost has decreased since this molecule was genericized in 2018; the same trend was observed for linezolid. Thus, costs for old ETs decreased overall, from EUR 1 033 610 in 2014 to EUR 604 997 in 2019, but global costs remained stable due to new ET utilization accounting for 46.5 % of overall costs in 2019. Tedizolid, used as suppressive antimicrobial therapy, represented 77.5 % of total new ET costs. In our centre, dalbavancin was never used. The cost paid by RCs for ETs and the duration of ET remained stable overall between 2016 and 2019. Conclusions: A high consumption of off-label ET is required to treat patients with BJIs in a CRIOAc, and the consequence is a high cost of antimicrobial therapy for these patients, estimated to be almost EUR 10 million in France annually. Costs associated with ET utilization remained stable over the years. On the one hand, the introduction of the generic drugs of daptomycin and linezolid has significantly decreased the share of old ETs, but, on the other hand, the need for new ETs to treat infections associated with more resistant pathogens has not led to decrease in the overall costs. A drastic price reduction of generic drugs is essential to limit the costs associated with more complex BJIs.

2.
Sci Rep ; 11(1): 118, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420239

RESUMEN

Sulf2a belongs to the Sulf family of extracellular sulfatases which selectively remove 6-O-sulfate groups from heparan sulfates, a critical regulation level for their role in modulating the activity of signalling molecules. Data presented here define Sulf2a as a novel player in the control of Sonic Hedgehog (Shh)-mediated cell type specification during spinal cord development. We show that Sulf2a depletion in zebrafish results in overproduction of V3 interneurons at the expense of motor neurons and also impedes generation of oligodendrocyte precursor cells (OPCs), three cell types that depend on Shh for their generation. We provide evidence that Sulf2a, expressed in a spatially restricted progenitor domain, acts by maintaining the correct patterning and specification of ventral progenitors. More specifically, Sulf2a prevents Olig2 progenitors to activate high-threshold Shh response and, thereby, to adopt a V3 interneuron fate, thus ensuring proper production of motor neurons and OPCs. We propose a model in which Sulf2a reduces Shh signalling levels in responding cells by decreasing their sensitivity to the morphogen factor. More generally, our work, revealing that, in contrast to its paralog Sulf1, Sulf2a regulates neural fate specification in Shh target cells, provides direct evidence of non-redundant functions of Sulfs in the developing spinal cord.


Asunto(s)
Proteínas Hedgehog/metabolismo , Médula Espinal/crecimiento & desarrollo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Heparitina Sulfato/metabolismo , Interneuronas/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo , Transducción de Señal , Médula Espinal/metabolismo , Sulfatasas/genética , Sulfatasas/metabolismo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/genética
3.
Glia ; 67(8): 1478-1495, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30980466

RESUMEN

Generation of glial cell diversity in the developing spinal cord is known to depend on spatio-temporal patterning programs. In particular, expression of the transcription factor Olig2 in neural progenitors of the pMN domain is recognized as critical to their fate choice decision to form oligodendrocyte precursor cells (OPCs) instead of astrocyte precursors (APs). However, generating some confusion, lineage-tracing studies of Olig2 progenitors in the spinal cord provided evidence that these progenitors also generate some astrocytes. Here, we addressed the role of the heparan sulfate-editing enzyme Sulf2 in the control of gliogenesis and found an unanticipated function for this enzyme. At initiation of gliogenesis in mouse, Sulf2 is expressed in ventral neural progenitors of the embryonic spinal cord, including in Olig2-expressing cells of the pMN domain. We found that sulf2 deletion, while not affecting OPC production, impairs generation of a previously unknown Olig2-expressing pMN-derived cell subtype that, in contrast to OPCs, does not upregulate Sox10, PDGFRα or Olig1. Instead, these cells activate expression of AP identity genes, including aldh1L1 and fgfr3 and, of note, retain Olig2 expression as they populate the spinal parenchyma at embryonic stages but also as they differentiate into mature astrocytes at postnatal stages. Thus, our study, by revealing the existence of Olig2-expressing APs that segregate early from pMN cells under the influence of Sulf2, supports the existence of a common source of APs and OPCs in the ventral spinal cord and highlights divergent regulatory mechanism for the development of pMN-derived OPCs and APs.


Asunto(s)
Astrocitos/enzimología , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Médula Espinal/enzimología , Sulfatasas/metabolismo , Animales , Astrocitos/citología , Sustancia Gris/citología , Sustancia Gris/enzimología , Sustancia Gris/crecimiento & desarrollo , Ratones Transgénicos , Células-Madre Neurales/citología , Células-Madre Neurales/enzimología , Neurogénesis/fisiología , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Factores de Transcripción SOXE/metabolismo , Médula Espinal/citología , Médula Espinal/crecimiento & desarrollo , Sulfatasas/genética
4.
Neural Dev ; 13(1): 3, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29519242

RESUMEN

BACKGROUND: Most oligodendrocytes of the spinal cord originate from ventral progenitor cells of the pMN domain, characterized by expression of the transcription factor Olig2. A minority of oligodendrocytes is also recognized to emerge from dorsal progenitors during fetal development. The prevailing view is that generation of ventral oligodendrocytes depends on Sonic hedgehog (Shh) while dorsal oligodendrocytes develop under the influence of Fibroblast Growth Factors (FGFs). RESULTS: Using the well-established model of the chicken embryo, we show that ventral spinal progenitor cells activate FGF signaling at the onset of oligodendrocyte precursor cell (OPC) generation. Inhibition of FGF receptors at that time appears sufficient to prevent generation of ventral OPCs, highlighting that, in addition to Shh, FGF signaling is required also for generation of ventral OPCs. We further reveal an unsuspected interplay between Shh and FGF signaling by showing that FGFs serve dual essential functions in ventral OPC specification. FGFs are responsible for timely induction of a secondary Shh signaling center, the lateral floor plate, a crucial step to create the burst of Shh required for OPC specification. At the same time, FGFs prevent down-regulation of Olig2 in pMN progenitor cells as these cells receive higher threshold of the Shh signal. Finally, we bring arguments favoring a key role of newly differentiated neurons acting as providers of the FGF signal required to trigger OPC generation in the ventral spinal cord. CONCLUSION: Altogether our data reveal that the FGF signaling pathway is activated and required for OPC commitment in the ventral spinal cord. More generally, our data may prove important in defining strategies to produce large populations of determined oligodendrocyte precursor cells from undetermined neural progenitors, including stem cells. In the long run, these new data could be useful in attempts to stimulate the oligodendrocyte fate in residing neural stem cells.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Hedgehog/metabolismo , Oligodendroglía/metabolismo , Transducción de Señal/fisiología , Médula Espinal/citología , Animales , Embrión de Pollo , Electroporación , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Hedgehog/genética , Técnicas In Vitro , Proteínas del Tejido Nervioso , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Técnicas de Cultivo de Órganos , Médula Espinal/embriología , Células Madre/fisiología
6.
Development ; 141(6): 1392-403, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24595292

RESUMEN

In the ventral spinal cord, generation of neuronal and glial cell subtypes is controlled by Sonic hedgehog (Shh). This morphogen contributes to cell diversity by regulating spatial and temporal sequences of gene expression during development. Here, we report that establishing Shh source cells is not sufficient to induce the high-threshold response required to specify sequential generation of ventral interneurons and oligodendroglial cells at the right time and place in zebrafish. Instead, we show that Shh-producing cells must repeatedly upregulate the secreted enzyme Sulfatase1 (Sulf1) at two critical time points of development to reach their full inductive capacity. We provide evidence that Sulf1 triggers Shh signaling activity to establish and, later on, modify the spatial arrangement of gene expression in ventral neural progenitors. We further present arguments in favor of Sulf1 controlling Shh temporal activity by stimulating production of active forms of Shh from its source. Our work, by pointing out the key role of Sulf1 in regulating Shh-dependent neural cell diversity, highlights a novel level of regulation, which involves temporal evolution of Shh source properties.


Asunto(s)
Proteínas Hedgehog/metabolismo , Médula Espinal/embriología , Médula Espinal/metabolismo , Sulfatasas/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas Hedgehog/deficiencia , Proteínas Hedgehog/genética , Ratones , Células-Madre Neurales/clasificación , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neurogénesis/fisiología , Transducción de Señal , Médula Espinal/citología , Sulfatasas/genética , Sulfotransferasas/genética , Sulfotransferasas/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
7.
J Neurosci ; 32(50): 18018-34, 2012 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-23238718

RESUMEN

In the developing ventral spinal cord, motor neurons (MNs) and oligodendrocyte precursor cells (OPCs) are sequentially generated from a common pool of neural progenitors included in the so-called pMN domain characterized by Olig2 expression. Here, we establish that the secreted Sulfatase 1 (Sulf1) is a major component of the mechanism that causes these progenitors to stop producing MNs and change their fate to generate OPCs. We show that specification of OPCs is severely affected in sulf1-deficient mouse embryos. This defect does not rely on abnormal patterning of the spinal cord or failure in maintenance of pMN progenitors at the onset of OPC specification. Instead, the efficiency of OPC induction is reduced, only few Olig2 progenitors are recruited to generate OPCs, meanwhile they continue to produce MNs beyond the normal timing of the neuroglial switch. Using the chicken embryo, we show that Sulf1 activity is required precisely at the stage of the MN-to-OPC fate switch. Finally, we bring arguments supporting the view that Sulf1 controls the level of Sonic Hedgehog (Shh) signaling activity, behaving as an enhancer rather than an obligatory component in the Shh pathway. Our study provides additional insights into the temporal control of Olig2 progenitor cell fate change by the identification of Sulf1 as an extracellular timing signal in the ventral spinal cord.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas Hedgehog/metabolismo , Neuronas Motoras/citología , Oligodendroglía/citología , Médula Espinal/embriología , Sulfotransferasas/metabolismo , Animales , Electroporación , Técnica del Anticuerpo Fluorescente , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Neuronas Motoras/enzimología , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Oligodendroglía/enzimología , Transducción de Señal/fisiología , Médula Espinal/metabolismo
8.
Dev Biol ; 344(2): 611-20, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20488175

RESUMEN

In the vertebrate central nervous system (CNS), astrocytes are the most abundant and functionally diverse glial cell population. However, the mechanisms underlying their specification and differentiation are still poorly understood. In this study, we have defined spatially and temporally the origin of astrocytes and studied the role of BMPs in astrocyte development in the embryonic chick spinal cord. Using explant cultures, we show that astrocyte precursors started migrating out of the neuroepithelium in the mantle layer from E5, and that the dorsal-most level of the neuroepithelium, from the roof plate to the dl3 level, did not generate GFAP-positive astrocytes. Using a variety of early astrocyte markers together with functional analyses, we show that dorsal-most progenitors displayed a potential for astrocyte production but that dorsally-derived BMP signalling, possibly mediated through BMP receptor 1B, promoted neuronal specification instead. BMP treatment completely prevented astrocyte development from intermediate spinal cord explants at E5, whereas it promoted it at E6. Such an abrupt change in the response of this tissue to BMP signalling could be correlated to the onset of new foci of BMP activity and enhanced expression of BMP receptor 1A, suggesting that BMP signalling could promote astrocyte development in this region.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/fisiología , Médula Espinal/embriología , Médula Espinal/metabolismo , Animales , Astrocitos/metabolismo , Diferenciación Celular , Embrión de Pollo , Embrión no Mamífero , Proteína Ácida Fibrilar de la Glía/metabolismo , Neuroglía/metabolismo , Neuroglía/fisiología , Neuronas/metabolismo , Transducción de Señal/fisiología , Médula Espinal/citología
9.
Development ; 134(3): 625-34, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17215311

RESUMEN

Although glial cells missing (gcm) genes are known as glial determinants in the fly embryo, the role of vertebrate orthologs in the central nervous system is still under debate. Here we show for the first time that the chicken ortholog of fly gcm (herein referred to as c-Gcm1), is expressed in early neuronal lineages of the developing spinal cord and is required for neural progenitors to differentiate as neurons. Moreover, c-Gcm1 overexpression is sufficient to trigger cell cycle exit and neuronal differentiation in neural progenitors. Thus, c-Gcm1 expression constitutes a crucial step in the developmental cascade that prompts progenitors to generate neurons: c-Gcm1 acts downstream of proneural (neurogenin) and progenitor (Sox1-3) factors and upstream of NeuroM neuronal differentiation factor. Strikingly, this neurogenic role is not specific to the vertebrate gene, as fly gcm and gcm2 are also sufficient to induce the expression of neuronal markers. Interestingly, the neurogenic role is restricted to post-embryonic stages and we identify two novel brain neuronal lineages expressing and requiring gcm genes. Finally, we show that fly gcm and the chick and mouse orthologs induce expression of neural markers in HeLa cells. These data, which demonstrate a conserved neurogenic role for Gcm transcription factors, call for a re-evaluation of the mode of action of these genes during evolution.


Asunto(s)
Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Médula Espinal/embriología , Médula Espinal/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Embrión de Pollo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila/embriología , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Células HeLa , Humanos , Ratones , Proteínas del Tejido Nervioso/química , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Factores de Transcripción/química , Transfección
10.
Dev Biol ; 303(2): 800-13, 2007 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-17173889

RESUMEN

During development, neural cell fate in the vertebrate optic nerve is restricted to the astroglial lineage. However, when isolated from the embryo and explanted in vitro, optic nerve progenitors generate neurons instead of astrocytes, suggesting that neuronal potentialities exist and are repressed in progenitors in vivo. Here we have investigated the mechanisms controlling cell fate in the optic nerve. The optic nerve is characterized by expression of the homeodomain transcription factor Pax2 which is maintained in differentiated astrocytes. We have observed that Pax2 is rapidly down-regulated in explanted optic nerves that generate neurons, and that its overexpression by electroporation in the optic nerve, or ectopically in the neural tube, is sufficient to block neuronal differentiation and allow glial development, showing that Pax2 plays a major role in controlling cell fate in the optic nerve. In vitro and ex vivo experiments further show that a signaling cascade that involves successively Sonic hedgehog and FGF is required to maintain Pax2 expression in optic nerve precursors whereby inhibiting the neuronal fate and promoting astroglial differentiation.


Asunto(s)
Nervio Óptico/embriología , Nervio Óptico/metabolismo , Factor de Transcripción PAX2/metabolismo , Animales , Apoptosis/efectos de los fármacos , Proteínas Morfogenéticas Óseas/farmacología , Diferenciación Celular , Embrión de Pollo , Epistasis Genética , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/citología , Neuronas/metabolismo , Nervio Óptico/citología , Factor de Transcripción PAX2/genética , Pigmentación/efectos de los fármacos , Transducción de Señal
11.
J Neurosci ; 26(19): 5037-48, 2006 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-16687495

RESUMEN

In the embryonic chick ventral spinal cord, the initial emergence of oligodendrocytes is a relatively late event that depends on prolonged Sonic hedgehog (Shh) signaling. In this report, we show that specification of oligodendrocyte precursors (OLPs) from ventral Nkx2.2-expressing neural progenitors occurs precisely when these progenitors stop generating neurons, indicating that the mechanism of the neuronal/oligodendroglial switch is a common feature of ventral OLP specification. We further show that an experimental early increase in the concentration of Shh is sufficient to induce premature specification of OLPs at the expense of neuronal genesis indicating that the relative doses of Shh received by ventral progenitors determine whether they become neurons or glia. Accordingly, we observe that the Shh protein accumulates at the apical surface of Nkx2.2-expressing cells just before OLP specification, providing direct evidence that these cells are subjected to a higher concentration of the morphogen when they switch to an oligodendroglial fate. Finally, we show that this abrupt change in Shh distribution is most likely attributable to the timely activity of Sulfatase 1 (Sulf1), a secreted enzym that modulates the sulfation state of heparan sulfate proteoglycans. Sulf1 is expressed in the ventral neuroepithelium just before OLP specification, and we show that its experimental overexpression leads to apical concentration of Shh on neuroepithelial cells, a decisive event for the switch of ventral neural progenitors toward an oligodendroglial fate.


Asunto(s)
Oligodendroglía/citología , Oligodendroglía/metabolismo , Médula Espinal/citología , Médula Espinal/metabolismo , Células Madre/citología , Células Madre/metabolismo , Sulfotransferasas/metabolismo , Transactivadores/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Embrión de Pollo , Proteínas Hedgehog , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio , Neuronas/citología , Neuronas/metabolismo , Proteínas Nucleares , Transducción de Señal/fisiología , Factores de Transcripción
12.
Dev Biol ; 270(2): 308-21, 2004 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-15183716

RESUMEN

In the developing spinal cord, oligodendrocyte progenitors (OLPs) originate from the ventral neuroepithelium and the specification of this lineage depends on the inductive activity of Sonic hedgehog (Shh) produced by ventral midline cells. On the other hand, it has been shown that OLP identity is acquired by the coexpression of the transcription factors olig2 and nkx2.2. Although initially expressed in adjacent nonoverlapping domains of the ventral neuroepithelium, these transcription factors become coexpressed in the pMN domain at the time of OLP specification through dorsal extension of the Nkx2.2 domain. Here we show that Shh is sufficient to promote the coexpression of Olig2 and Nkx2.2 in neuroepithelial cells. In addition, Shh activity is necessary for this coexpression since blocking Shh signalling totally abolishes Olig2 expression and impedes dorsal extension of Nkx2.2. Although Shh at these stages affects neuroepithelial cell proliferation, the dorsal extension of the Nkx2.2 domain is not due to progenitor proliferation but to repatterning of the ventral neuroepithelium. Finally, Shh not only stimulates OLP specification but also simultaneously restricts the ventral extension of the astrocyte progenitor (AP) domain and reduces astrocyte development. We propose that specification of distinct glial lineages is the result of a choice that depends on Shh signalling.


Asunto(s)
Astrocitos/fisiología , Regulación del Desarrollo de la Expresión Génica , Oligodendroglía/fisiología , Transducción de Señal , Médula Espinal/embriología , Transactivadores/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Bromodesoxiuridina , Embrión de Pollo , Cartilla de ADN , Proteínas Hedgehog , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Hibridación in Situ , Etiquetado Corte-Fin in Situ , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares , Transactivadores/fisiología , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra
13.
Mol Cell Neurosci ; 25(4): 612-28, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15080891

RESUMEN

To address the question of the origin of glial cells and the mechanisms leading to their specification, we have sought to identify novel genes expressed in glial progenitors. We adopted suppression subtractive hybridization (SSH) to establish a chick cDNA library enriched for genes specifically expressed at 6 days of incubation (E6) in the ventral neuroepithelium, a tissue previously shown to contain glial progenitors. Screens were then undertaken to select differentially expressed cDNAs, and out of 82 unique SSH clones, 21 were confirmed to display a regionalized expression along the dorsoventral axis of the E6 ventral neuroepithelium. Among these, we identified a transcript coding for the chick orthologue of Sulf1, a recently identified cell surface sulfatase, as a new, early marker of oligodendrocyte (OL) precursors in the chick embryonic spinal cord. This study provides groundwork for the further identification of genes involved in glial specification.


Asunto(s)
Sistema Nervioso Central/embriología , Células Epiteliales/enzimología , Oligodendroglía/enzimología , Células Madre/enzimología , Sulfotransferasas/genética , Animales , Biomarcadores/análisis , Tipificación del Cuerpo/genética , Diferenciación Celular/genética , Linaje de la Célula/genética , Sistema Nervioso Central/citología , Sistema Nervioso Central/enzimología , Embrión de Pollo , ADN Complementario/análisis , ADN Complementario/genética , Células Epiteliales/citología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación Enzimológica de la Expresión Génica/genética , Biblioteca Genómica , Proteínas del Tejido Nervioso/genética , Hibridación de Ácido Nucleico/métodos , Oligodendroglía/citología , Células Madre/citología
14.
Development ; 129(22): 5117-30, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12399304

RESUMEN

In the vertebrate spinal cord, oligodendrocytes originate from a restricted region of the ventral neuroepithelium. This ventral localisation of oligodendrocyte precursors (OLPs) depends on the inductive influence of sonic hedgehog (Shh) secreted by ventral midline cells. We have investigated whether the ventral restriction of OLP specification might also depend on inhibiting signals mediated by bone morphogenetic proteins (BMPs). BMPs invariably and markedly inhibited oligodendrocyte development in ventral neural tissue both in vitro and in vivo. Conversely, in vivo ablation of the dorsal most part of the chick spinal cord or inactivation of BMP signalling using grafts of noggin-producing cells promoted the appearance of neuroepithelial OLPs dorsal to their normal domain of emergence, showing that endogenous BMPs contribute to the inhibition of oligodendrocyte development in the spinal cord. BMPs were able to oppose the Shh-mediated induction of OLPs in spinal cord neuroepithelial explants dissected before oligodendrocyte induction, suggesting that BMPs may repress OLP specification by interfering with Shh signalling in vivo. Strikingly, among the transcription factors involved in OLP specification, BMP treatment strongly inhibited the expression of Olig2 but not of Nkx2.2, suggesting that BMP-mediated inhibition of oligodendrogenesis is controlled through the repression of the former transcription factor. Altogether, our data show that oligodendrogenesis is not only regulated by ventral inductive signals such as Shh, but also by dorsal inhibiting signals including BMP factors. They suggest that the dorsoventral position of OLPs depends on a tightly regulated balance between Shh and BMP activities.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Oligodendroglía/metabolismo , Médula Espinal/embriología , Médula Espinal/metabolismo , Factor de Crecimiento Transformador beta , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Proteína Morfogenética Ósea 2 , Proteína Morfogenética Ósea 4 , Proteínas Morfogenéticas Óseas/farmacología , Linaje de la Célula , Embrión de Pollo , Técnicas de Cultivo/métodos , Trasplante de Tejido Fetal , Proteínas Hedgehog , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/efectos de los fármacos , Proteínas de Homeodominio/metabolismo , Cresta Neural/efectos de los fármacos , Cresta Neural/metabolismo , Oligodendroglía/efectos de los fármacos , Médula Espinal/citología , Células Madre/metabolismo , Transactivadores/efectos de los fármacos , Transactivadores/metabolismo , Factores de Transcripción/efectos de los fármacos , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA