Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1216591, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37799600

RESUMEN

Members of the archaeal order Caldarchaeales (previously the phylum Aigarchaeota) are poorly sampled and are represented in public databases by relatively few genomes. Additional representative genomes will help resolve their placement among all known members of Archaea and provide insights into their roles in the environment. In this study, we analyzed 16S rRNA gene amplicons belonging to the Caldarchaeales that are available in public databases, which demonstrated that archaea of the order Caldarchaeales are diverse, widespread, and most abundant in geothermal habitats. We also constructed five metagenome-assembled genomes (MAGs) of Caldarchaeales from two geothermal features to investigate their metabolic potential and phylogenomic position in the domain Archaea. Two of the MAGs were assembled from microbial community DNA extracted from fumarolic lava rocks from Mauna Ulu, Hawai'i, and three were assembled from DNA obtained from hot spring sinters from the El Tatio geothermal field in Chile. MAGs from Hawai'i are high quality bins with completeness >95% and contamination <1%, and one likely belongs to a novel species in a new genus recently discovered at a submarine volcano off New Zealand. MAGs from Chile have lower completeness levels ranging from 27 to 70%. Gene content of the MAGs revealed that these members of Caldarchaeales are likely metabolically versatile and exhibit the potential for both chemoorganotrophic and chemolithotrophic lifestyles. The wide array of metabolic capabilities exhibited by these members of Caldarchaeales might help them thrive under diverse harsh environmental conditions. All the MAGs except one from Chile harbor putative prophage regions encoding several auxiliary metabolic genes (AMGs) that may confer a fitness advantage on their Caldarchaeales hosts by increasing their metabolic potential and make them better adapted to new environmental conditions. Phylogenomic analysis of the five MAGs and over 3,000 representative archaeal genomes showed the order Caldarchaeales forms a monophyletic group that is sister to the clade comprising the orders Geothermarchaeales (previously Candidatus Geothermarchaeota), Conexivisphaerales and Nitrososphaerales (formerly known as Thaumarchaeota), supporting the status of Caldarchaeales members as a clade distinct from the Thaumarchaeota.

2.
Astrobiology ; 11(9): 875-82, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22059692

RESUMEN

In this experimental study, cells of the radiation-resistant bacterium Deinococcus radiodurans were exposed to several different sources of radiation chosen to replicate the charged particles found in the solar wind. Naked cells or cells mixed with dust grains (basalt or sandstone) differing in elemental composition were exposed to electrons, protons, and ions to determine the probability of cell survival after irradiation. Doses necessary to reduce the viability of cell population to 10% (LD(10)) were determined under different experimental conditions. The results of this study indicate that low-energy particle radiation (2-4 keV), typically present in the slow component of the solar wind, had no effect on dehydrated cells, even if exposed at fluences only reached in more than 1000 years at Sun-Earth distance (1 AU). Higher-energy ions (200 keV) found in solar flares would inactivate 90% of exposed cells after several events in less than 1 year at 1 AU. When mixed with dust grains, LD(10) increases about 10-fold. These results show that, compared to the highly deleterious effects of UV radiation, solar wind charged particles are relatively benign, and organisms protected under grains from UV radiation would also be protected from the charged particles considered in this study.


Asunto(s)
Simulación por Computador , Deinococcus/citología , Deinococcus/efectos de la radiación , Laboratorios , Viabilidad Microbiana , Luz Solar , Viento , Carbono , Deinococcus/ultraestructura , Electrones , Viabilidad Microbiana/efectos de la radiación , Protones , Silicatos/química
3.
Science ; 327(5970): 1214-8, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20203042

RESUMEN

The Cretaceous-Paleogene boundary approximately 65.5 million years ago marks one of the three largest mass extinctions in the past 500 million years. The extinction event coincided with a large asteroid impact at Chicxulub, Mexico, and occurred within the time of Deccan flood basalt volcanism in India. Here, we synthesize records of the global stratigraphy across this boundary to assess the proposed causes of the mass extinction. Notably, a single ejecta-rich deposit compositionally linked to the Chicxulub impact is globally distributed at the Cretaceous-Paleogene boundary. The temporal match between the ejecta layer and the onset of the extinctions and the agreement of ecological patterns in the fossil record with modeled environmental perturbations (for example, darkness and cooling) lead us to conclude that the Chicxulub impact triggered the mass extinction.


Asunto(s)
Extinción Biológica , Fósiles , Planetas Menores , Animales , Sedimentos Geológicos , México
4.
Radiat Environ Biophys ; 46(3): 247-53, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17361436

RESUMEN

Previous studies on naturally radioactive materials suggested that they can have a mutagenic effect on plants (growing in sands in Kerala, South West India), and on bats (dwelling in an abandoned underground mine of primary monazite ore in Namaqualand, Western Cape, South Africa). We hypothesised, based on previous theoretical work, that radioactive sands would not induce mutants in microorganisms over time scales typical of doubling times in the natural environment. The potential of exceptionally monazite (Th)-rich mineral sands collected from the coast of Espirito Santo, Brazil to induce single-point reversion in Escherichia coli cultures (both repair-competent and repair-deficient strains) was tested using the tryptophan reverse mutation assay. The results show that at least on a short-term scale (1-7 days), the monazite-rich sands did not cause an increase in reversion above background.


Asunto(s)
Escherichia coli/efectos de la radiación , Pruebas de Mutagenicidad , Radioisótopos/análisis , Microbiología del Suelo , Suelo/análisis , Océano Atlántico , Brasil , Cuarzo/análisis , Agua de Mar , Sudáfrica , Triptófano/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA