Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Protein Expr Purif ; 55(2): 343-51, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17601746

RESUMEN

Alkyldihydroxyacetonephosphate is the building block for the biosynthesis of ether phospholipids, which are essential components of eukaryotic cell membranes and are involved in a variety of signaling processes. The metabolite is synthesized by alkyldihydroxyacetonephosphate synthase (ADPS), a peroxisomal flavoenzyme. Deficiency in ADPS activity causes rhizomelic chondrodysplasia punctata type 3, a very severe genetic disease. ADPS is unusual in that it uses a typical redox cofactor such as FAD to catalyze a non-redox reaction. With the goal of undertaking a structural investigation of the enzyme, we have characterized recombinant ADPS from different sources: Cavia porcellus, Drosophila melanogaster, Homo sapiens, Archaeoglobus fulgidus, and Dictyostelium discoideum. The protein from D. discoideum was found to be the best candidate for structural studies. We describe a protocol for expression and purification of large amounts of pure and stable enzyme in its holo (FAD-bound) form. A search of deletion mutants identified a protein variant that forms crystals diffracting up to 2A resolution.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Transferasas Alquil y Aril/química , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cristalografía por Rayos X , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida , Humanos , Hidrólisis , Datos de Secuencia Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Espectrofotometría Ultravioleta
2.
Structure ; 15(6): 683-92, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17562315

RESUMEN

Ether phospholipids are essential constituents of eukaryotic cell membranes. Rhizomelic chondrodysplasia punctata type 3 is a severe peroxisomal disorder caused by inborn deficiency of alkyldihydroxyacetonephosphate synthase (ADPS). The enzyme carries out the most characteristic step in ether phospholipid biosynthesis: formation of the ether bond. The crystal structure of ADPS from Dictyostelium discoideum shows a fatty-alcohol molecule bound in a narrow hydrophobic tunnel, specific for aliphatic chains of 16 carbons. Access to the tunnel is controlled by a flexible loop and a gating helix at the protein-membrane interface. Structural and mutagenesis investigations identify a cluster of hydrophilic catalytic residues, including an essential tyrosine, possibly involved in substrate proton abstraction, and the arginine that is mutated in ADPS-deficient patients. We propose that ether bond formation might be orchestrated through a covalent imine intermediate with the flavin, accounting for the noncanonical employment of a flavin cofactor in a nonredox reaction.


Asunto(s)
Errores Innatos del Metabolismo Lipídico , Trastorno Peroxisomal/enzimología , Éteres Fosfolípidos/metabolismo , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Sitios de Unión , Catálisis , Condrodisplasia Punctata Rizomélica/enzimología , Condrodisplasia Punctata Rizomélica/metabolismo , Condrodisplasia Punctata Rizomélica/patología , Secuencia Conservada , Cristalografía por Rayos X , Dictyostelium/enzimología , Dimerización , Flavina-Adenina Dinucleótido/química , Flavina-Adenina Dinucleótido/metabolismo , Histidina/metabolismo , Humanos , Enlace de Hidrógeno , Modelos Biológicos , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Trastorno Peroxisomal/genética , Fenilalanina/metabolismo , Éteres Fosfolípidos/química , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Espectrometría Raman , Especificidad por Sustrato , Tirosina/metabolismo
3.
Biochemistry ; 45(29): 8712-20, 2006 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-16846214

RESUMEN

Mycobacterium tuberculosis FprA is a NADPH-ferredoxin reductase, functionally and structurally similar to the mammalian adrenodoxin reductase. It is presumably involved in supplying electrons to one or more of the pathogen's cytochrome P450s through reduced ferredoxins. It has been proposed on the basis of crystallographic data (Bossi, R. T., et al. (2002) Biochemistry 41, 8807-8818) that the highly conserved His57 and Glu214 whose side chains are H-bonded are involved in catalysis. Both residues were individually changed to nonionizable amino acyl residues through site-directed mutagenesis. Steady-state kinetics showed that the role of Glu214 in catalysis is negligible. On the contrary, the substitutions of His57 markedly impaired the catalytic efficiency of FprA for ferredoxin in the physiological reaction. Furthemore, they decreased the k(cat)/K(m) value for NADPH in the ferricyanide reduction. Rapid-reaction (stopped-flow) kinetic analysis of the isolated reductive half-reaction of wild-type and His57Gln forms of FprA with NADPH and NADH allowed a detailed description of the mechanism of enzyme-bound FAD reduction, with the identification of the intermediates involved. The His57Gln mutation caused a 6-fold decrease in the rate of hydride transfer from either NADPH or NADH to the enzyme-bound FAD cofactor. The 3D structure of FprA-H57Q, obtained at 1.8 A resolution, explains the inefficient hydride transfer of the mutant in terms of a suboptimal geometry of the nicotinamide-isoalloxazine interaction in the active site. These data demonstrate the role of His57 in the correct binding of NADPH to FprA for the subsequent steps of the catalytic cycle to proceed at a high rate.


Asunto(s)
Sitios de Unión , Ácido Glutámico/química , Histidina/química , NADH NADPH Oxidorreductasas/química , Secuencia de Aminoácidos , Anaerobiosis , Cristalografía por Rayos X , Estabilidad de Enzimas , Flavina-Adenina Dinucleótido/metabolismo , Calor , Cinética , Mycobacterium tuberculosis , NAD/metabolismo , NADH NADPH Oxidorreductasas/genética , NADP/metabolismo , Oxidación-Reducción
4.
Protein Sci ; 13(11): 2979-91, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15498940

RESUMEN

Glutamate synthase (GltS) is a complex iron-sulfur flavoprotein that catalyzes the reductive transfer of L-glutamine amide group to the C2 carbon of 2-oxoglutarate yielding two molecules of L-glutamate. Molecular dynamics calculations in explicit solvent were carried out to gain insight into the conformational flexibility of GltS and into the role played by the enzyme substrates in regulating the catalytic cycle. We have modelled the free (unliganded) form of Azospirillum brasilense GltS alpha subunit and the structure of the reduced enzyme in complex with the L-glutamine and 2-oxoglutarate substrates starting from the crystallographically determined coordinates of the GltS alpha subunit in complex with L-methionine sulphone and 2-oxoglutarate. The present 4-ns molecular dynamics calculations reveal that the GltS glutaminase site may exist in a catalytically inactive conformation unable to bind glutamine, and in a catalytically competent conformation, which is stabilized by the glutamine substrate. Substrates binding also induce (1) closure of the loop formed by residues 263-271 with partial shielding of the glutaminase site from solvent, and (2) widening of the ammonia tunnel entrance at the glutaminase end to allow for ammonia diffusion toward the synthase site. The Q-loop of glutamate synthase, which acts as an active site lid in other amidotransferases, seems to maintain an open conformation. Finally, binding of L-methionine sulfone, a glutamine analog that mimics the tetrahedral transient species occurring during its hydrolysis, causes a coordinated rigid-body motion of segments of the glutaminase domain that results in the inactive conformation observed in the crystal structure of GltS alpha subunit.


Asunto(s)
Simulación por Computador , Glutamato Sintasa/química , Metionina/análogos & derivados , Modelos Moleculares , Azospirillum brasilense/enzimología , Estabilidad de Enzimas , Glutamina/química , Proteínas Hierro-Azufre/química , Metionina/química , Movimiento (Física) , Unión Proteica , Especificidad por Sustrato
5.
J Mol Biol ; 341(5): 1237-49, 2004 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-15321719

RESUMEN

Cytokinins form a diverse class of compounds that are essential for plant growth. Cytokinin dehydrogenase has a major role in the control of the levels of these plant hormones by catalysing their irreversible oxidation. The crystal structure of Zea mays cytokinin dehydrogenase displays the same two-domain topology of the flavoenzymes of the vanillyl-alcohol oxidase family but its active site cannot be related to that of any other family member. The X-ray analysis reveals a bipartite architecture of the catalytic centre, which consists of a funnel-shaped region on the protein surface and an internal cavity lined by the flavin ring. A pore with diameter of about 4A connects the two active-site regions. Snapshots of two critical steps along the reaction cycle were obtained through the structural analysis of the complexes with a slowly reacting substrate and the reaction product, which correspond to the states immediately before (Michaelis complex) and after (product complex) oxidation has taken place. The substrate displays a "plug-into-socket" binding mode that seals the catalytic site and precisely positions the carbon atom undergoing oxidation in close contact with the reactive locus of the flavin. A polarising H-bond between the substrate amine group and an Asp-Glu pair may facilitate oxidation. Substrate to product conversion results in small atomic movements, which lead to a planar conformation of the reaction product allowing double-bond conjugation. These features in the mechanism of amine recognition and oxidation differ from those observed in other flavin-dependent amine oxidases.


Asunto(s)
Citocininas/química , Oxidorreductasas/química , Proteínas de Plantas/química , Estructura Terciaria de Proteína , Zea mays/enzimología , Adenina/análogos & derivados , Sitios de Unión , Cristalografía por Rayos X , Flavina-Adenina Dinucleótido/metabolismo , Modelos Moleculares , Estructura Molecular , Oxidación-Reducción , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Unión Proteica , Zeatina/química , Zeatina/metabolismo
6.
J Mol Biol ; 330(1): 113-28, 2003 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-12818206

RESUMEN

Glutamate synthases (GltS) are crucial enzymes in ammonia assimilation in plants and bacteria, where they catalyze the formation of two molecules of L-glutamate from L-glutamine and 2-oxoglutarate. The plant-type ferredoxin-dependent GltS and the functionally homologous alpha subunit of the bacterial NADPH-dependent GltS are complex four-domain monomeric enzymes of 140-165 kDa belonging to the NH(2)-terminal nucleophile family of amidotransferases. The enzymes function through the channeling of ammonia from the N-terminal amidotransferase domain to the FMN-binding domain. Here, we report the X-ray structure of the Synechocystis ferredoxin-dependent GltS with the substrate 2-oxoglutarate and the covalent inhibitor 5-oxo-L-norleucine bound in their physically distinct active sites solved using a new crystal form. The covalent Cys1-5-oxo-L-norleucine adduct mimics the glutamyl-thioester intermediate formed during L-glutamine hydrolysis. Moreover, we determined a high resolution structure of the GltS:2-oxoglutarate complex. These structures represent the enzyme in the active conformation. By comparing these structures with that of GltS alpha subunit and of related enzymes we propose a mechanism for enzyme self-regulation and ammonia channeling between the active sites. X-ray small-angle scattering experiments were performed on solutions containing GltS and its physiological electron donor ferredoxin (Fd). Using the structure of GltS and the newly determined crystal structure of Synechocystis Fd, the scattering experiments clearly showed that GltS forms an equimolar (1:1) complex with Fd. A fundamental consequence of this result is that two Fd molecules bind consecutively to Fd-GltS to yield the reduced FMN cofactor during catalysis.


Asunto(s)
Ferredoxinas/química , Ferredoxinas/metabolismo , Glutamato Sintasa/química , Glutamato Sintasa/metabolismo , Cristalografía por Rayos X , Cianobacterias/química , Diazooxonorleucina/química , Diazooxonorleucina/metabolismo , Activación Enzimática , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Modelos Moleculares , Conformación Proteica , Compuestos de Amonio Cuaternario/química , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...