Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 72
1.
Cell Rep ; 43(4): 114073, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38578825

Macrophages are central innate immune cells whose function declines with age. The molecular mechanisms underlying age-related changes remain poorly understood, particularly in human macrophages. We report a substantial reduction in phagocytosis, migration, and chemotaxis in human monocyte-derived macrophages (MDMs) from older (>50 years old) compared with younger (18-30 years old) donors, alongside downregulation of transcription factors MYC and USF1. In MDMs from young donors, knockdown of MYC or USF1 decreases phagocytosis and chemotaxis and alters the expression of associated genes, alongside adhesion and extracellular matrix remodeling. A concordant dysregulation of MYC and USF1 target genes is also seen in MDMs from older donors. Furthermore, older age and loss of either MYC or USF1 in MDMs leads to an increased cell size, altered morphology, and reduced actin content. Together, these results define MYC and USF1 as key drivers of MDM age-related functional decline and identify downstream targets to improve macrophage function in aging.


Aging , Macrophages , Phagocytosis , Proto-Oncogene Proteins c-myc , Upstream Stimulatory Factors , Humans , Macrophages/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Adult , Upstream Stimulatory Factors/metabolism , Upstream Stimulatory Factors/genetics , Middle Aged , Adolescent , Phagocytosis/genetics , Young Adult , Transcription, Genetic , Aged , Chemotaxis/genetics
2.
J Acad Nutr Diet ; 124(2): 166-167, 2024 02.
Article En | MEDLINE | ID: mdl-37931724
3.
JAMA Cardiol ; 8(9): 808-815, 2023 09 01.
Article En | MEDLINE | ID: mdl-37494011

Importance: Longer leukocyte telomere length (LTL) is associated with a lower risk of adverse cardiovascular outcomes. The extent to which variation in LTL is associated with intermediary cardiovascular phenotypes is unclear. Objective: To evaluate the associations between LTL and a diverse set of cardiovascular imaging phenotypes. Design, Setting, and Participants: This is a population-based cross-sectional study of UK Biobank participants recruited from 2006 to 2010. LTL was measured using a quantitative polymerase chain reaction method. Cardiovascular measurements were derived from cardiovascular magnetic resonance using machine learning. The median (IQR) duration of follow-up was 12.0 (11.3-12.7) years. The associations of LTL with imaging measurements and incident heart failure (HF) were evaluated by multivariable regression models. Genetic associations between LTL and significantly associated traits were investigated by mendelian randomization. Data were analyzed from January to May 2023. Exposure: LTL. Main Outcomes and Measures: Cardiovascular imaging traits and HF. Results: Of 40 459 included participants, 19 529 (48.3%) were men, and the mean (SD) age was 55.1 (7.6) years. Longer LTL was independently associated with a pattern of positive cardiac remodeling (higher left ventricular mass, larger global ventricular size and volume, and higher ventricular and atrial stroke volumes) and a lower risk of incident HF (LTL fourth quartile vs first quartile: hazard ratio, 0.86; 95% CI, 0.81-0.91; P = 1.8 × 10-6). Mendelian randomization analysis suggested a potential causal association between LTL and left ventricular mass, global ventricular volume, and left ventricular stroke volume. Conclusions and Relevance: In this cross-sectional study, longer LTL was associated with a larger heart with better cardiac function in middle age, which could potentially explain the observed lower risk of incident HF.


Heart Failure , Male , Middle Aged , Humans , Female , Cross-Sectional Studies , Phenotype , Heart Failure/genetics , Leukocytes , Telomere/genetics
4.
Elife ; 122023 04 20.
Article En | MEDLINE | ID: mdl-37079368

Background: Genome-wide association studies (GWASs) have identified genetic susceptibility variants for both leukocyte telomere length (LTL) and lung cancer susceptibility. Our study aims to explore the shared genetic basis between these traits and investigate their impact on somatic environment of lung tumours. Methods: We performed genetic correlation, Mendelian randomisation (MR), and colocalisation analyses using the largest available GWASs summary statistics of LTL (N=464,716) and lung cancer (N=29,239 cases and 56,450 controls). Principal components analysis based on RNA-sequencing data was used to summarise gene expression profile in lung adenocarcinoma cases from TCGA (N=343). Results: Although there was no genome-wide genetic correlation between LTL and lung cancer risk, longer LTL conferred an increased risk of lung cancer regardless of smoking status in the MR analyses, particularly for lung adenocarcinoma. Of the 144 LTL genetic instruments, 12 colocalised with lung adenocarcinoma risk and revealed novel susceptibility loci, including MPHOSPH6, PRPF6, and POLI. The polygenic risk score for LTL was associated with a specific gene expression profile (PC2) in lung adenocarcinoma tumours. The aspect of PC2 associated with longer LTL was also associated with being female, never smokers, and earlier tumour stages. PC2 was strongly associated with cell proliferation score and genomic features related to genome stability, including copy number changes and telomerase activity. Conclusions: This study identified an association between longer genetically predicted LTL and lung cancer and sheds light on the potential molecular mechanisms related to LTL in lung adenocarcinomas. Funding: Institut National du Cancer (GeniLuc2017-1-TABAC-03-CIRC-1-TABAC17-022), INTEGRAL/NIH (5U19CA203654-03), CRUK (C18281/A29019), and Agence Nationale pour la Recherche (ANR-10-INBS-09).


Adenocarcinoma of Lung , Lung Neoplasms , Humans , Female , Male , Transcriptome , Genome-Wide Association Study , Risk Factors , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Leukocytes/metabolism , Telomere/genetics , Telomere/metabolism , Genetic Variation , RNA Splicing Factors/metabolism , Transcription Factors/metabolism
5.
PLoS One ; 18(3): e0282363, 2023.
Article En | MEDLINE | ID: mdl-36947528

Telomeres form protective caps at the ends of chromosomes, and their attrition is a marker of biological aging. Short telomeres are associated with an increased risk of neurological and psychiatric disorders including dementia. The mechanism underlying this risk is unclear, and may involve brain structure and function. However, the relationship between telomere length and neuroimaging markers is poorly characterized. Here we show that leucocyte telomere length (LTL) is associated with multi-modal MRI phenotypes in 31,661 UK Biobank participants. Longer LTL is associated with: i) larger global and subcortical grey matter volumes including the hippocampus, ii) lower T1-weighted grey-white tissue contrast in sensory cortices, iii) white-matter microstructure measures in corpus callosum and association fibres, iv) lower volume of white matter hyperintensities, and v) lower basal ganglia iron. Longer LTL was protective against certain related clinical manifestations, namely all-cause dementia (HR 0.93, 95% CI: 0.91-0.96), but not stroke or Parkinson's disease. LTL is associated with multiple MRI endophenotypes of neurodegenerative disease, suggesting a pathway by which longer LTL may confer protective against dementia.


Dementia , Neurodegenerative Diseases , Humans , Biological Specimen Banks , Brain/diagnostic imaging , Phenotype , Telomere/genetics , Neuroimaging , United Kingdom , Dementia/diagnostic imaging , Dementia/genetics , Leukocytes
7.
Eur J Endocrinol ; 188(2)2023 Feb 14.
Article En | MEDLINE | ID: mdl-36751991

OBJECTIVE: Older men on an average have lower testosterone concentrations, compared with younger men, and more age-related comorbidities. Whether lower testosterone concentrations contribute to biological ageing remains unclear. Shorter telomeres are a marker for biological age. We tested the hypothesis that testosterone concentrations are associated with leucocyte telomere length (LTL), in middle- to older-aged men. DESIGN: Cross-sectional analysis of the UK Biobank study, involving community-dwelling men aged 40-69 years. METHODS: Serum testosterone and sex hormone-binding globulin (SHBG) were assayed. Free testosterone was calculated (cFT). Leucocyte telomere length was measured using polymerase chain reaction. Multivariable models were used to assess associations of hormones with standardised LTL. RESULTS: In 167 706 men, median age 58 years, adjusting for sociodemographic, lifestyle, and medical factors, total testosterone was inversely associated with standardised LTL, which was 0.09 longer (95% confidence interval [CI], 0.08-0.10, P < .001) in men with total testosterone at median of lowest quintile [Q1] vs highest [Q5]. This relationship was attenuated after additional adjustment for SHBG (0.03 longer, CI = 0.02-0.05, P = .003). The association between cFT and LTL was similar in direction but lower in magnitude. In multivariable analysis, SHBG was inversely associated with standardised LTL, which was 0.12 longer (CI = 0.10-0.13, P < .001) for SHBG at median Q1 vs Q5. Results were similar with testosterone included in the model (0.10 longer, CI = 0.08-0.12, P < .001). CONCLUSIONS: Total testosterone and SHBG were independently and inversely associated with LTL. Men with higher testosterone or SHBG had shorter telomeres, arguing against a role for testosterone to slow biological ageing in men.


Biological Specimen Banks , Sex Hormone-Binding Globulin , Humans , Male , Middle Aged , Cross-Sectional Studies , Sex Hormone-Binding Globulin/analysis , Telomere , Testosterone , United Kingdom
8.
J Acad Nutr Diet ; 123(6): 912-922.e26, 2023 06.
Article En | MEDLINE | ID: mdl-36669753

BACKGROUND: Shorter telomere length (TL) is associated with risk of several age-related diseases and decreased life span, but the extent to which dietary patterns and practices associate with TL is uncertain. OBJECTIVE: This study aimed to investigate the association of dietary patterns and practices and leucocyte TL (LTL). DESIGN: This was a cross-sectional study. PARTICIPANTS AND SETTING: Data collected voluntarily from up to 422,797 UK Biobank participants, during 2006-2010. MAIN OUTCOME MEASURES: LTL was measured as a ratio of the telomere repeat number to a single-copy gene and was loge-transformed and standardized (z-LTL). STATISTICAL ANALYSES PERFORMED: Adherence a priori to a Mediterranean-style diet was assessed through the MedDietScore. Principal component analysis was used to a posteriori extract the "Meat" and "Prudent" dietary patterns. Additional dietary practices considered were the self-reported adherence to "Vegetarian" diet, "Eating 5-a-day of fruit and vegetables" and "Abstaining from eggs/dairy/wheat/sugar." Associations between quintiles of dietary patterns or adherence to dietary practices with z-LTL were investigated through multivariable linear regression models (adjusted for demographic, lifestyle, and clinical characteristics). RESULTS: Adherence to the "Mediterranean" and the "Prudent" patterns, was positively associated with LTL, with an effect magnitude in z-LTL of 0.020 SD and 0.014 SD, respectively, for the highest vs the lowest quintile of adherence to the pattern (both P values < 0.05). Conversely, a reversed association between quintile of the "Meat" pattern and LTL was observed, with z-LTL being on average shorter by 0.025 SD (P = 6.12×10-05) for participants in the highest quintile of the pattern compared with the lowest quintile. For adherents to "5-a-day" z-LTL was on average longer by 0.027 SD (P = 5.36×10-09), and for "abstainers," LTL was shorter by 0.016 SD (P = 2.51×10-04). The association of LTL with a vegetarian diet was nonsignificant after adjustment for demographic, lifestyle, and clinical characteristics. CONCLUSIONS: Several dietary patterns and practices associated with beneficial health effects are significantly associated with longer LTL. However, the magnitude of the association was small, and any clinical relevance is uncertain.


Biological Specimen Banks , Diet, Mediterranean , Humans , Cross-Sectional Studies , Telomere , United Kingdom
9.
Am J Hum Genet ; 109(8): 1472-1483, 2022 08 04.
Article En | MEDLINE | ID: mdl-35931051

Dyskeratosis congenita (DC) is an inherited bone-marrow-failure disorder characterized by a triad of mucocutaneous features that include abnormal skin pigmentation, nail dystrophy, and oral leucoplakia. Despite the identification of several genetic variants that cause DC, a significant proportion of probands remain without a molecular diagnosis. In a cohort of eight independent DC-affected families, we have identified a remarkable series of heterozygous germline variants in the gene encoding thymidylate synthase (TYMS). Although the inheritance appeared to be autosomal recessive, one parent in each family had a wild-type TYMS coding sequence. Targeted genomic sequencing identified a specific haplotype and rare variants in the naturally occurring TYMS antisense regulator ENOSF1 (enolase super family 1) inherited from the other parent. Lymphoblastoid cells from affected probands have severe TYMS deficiency, altered cellular deoxyribonucleotide triphosphate pools, and hypersensitivity to the TYMS-specific inhibitor 5-fluorouracil. These defects in the nucleotide metabolism pathway resulted in genotoxic stress, defective transcription, and abnormal telomere maintenance. Gene-rescue studies in cells from affected probands revealed that post-transcriptional epistatic silencing of TYMS is occurring via elevated ENOSF1. These cell and molecular abnormalities generated by the combination of germline digenic variants at the TYMS-ENOSF1 locus represent a unique pathogenetic pathway for DC causation in these affected individuals, whereas the parents who are carriers of either of these variants in a singular fashion remain unaffected.


Dyskeratosis Congenita , Thymidylate Synthase , Dyskeratosis Congenita/genetics , Germ Cells , Heterozygote , Humans , Nucleotides , Thymidylate Synthase/deficiency , Thymidylate Synthase/genetics
10.
J Bone Miner Res ; 37(10): 1997-2004, 2022 10.
Article En | MEDLINE | ID: mdl-35880304

We investigated independent associations between telomere length and risk of fracture and arthroplasty in UK Biobank participants. Leukocyte telomere length (LTL) was measured in baseline samples using a validated polymerase chain reaction (PCR) method. We used, in men and women separately, Cox proportional hazards models to calculate the hazard ratio (HR) for incident fracture (any, osteoporotic) or arthroplasty (hip or knee) over 1,186,410 person-years of follow-up. Covariates included age, white cell count, ethnicity, smoking, alcohol, physical activity, and menopause (women). In further analyses we adjusted for either estimated bone mineral density (eBMD) from heel quantitative ultrasound, handgrip strength, gait speed, total fat mass (bioimpedance), or blood biomarkers, all measured at baseline (2006-2010). We studied 59,500 women and 51,895 men, mean ± standard deviation (SD) age 56.4 ± 8.0 and 57.0 ± 8.3 years, respectively. During follow-up there were 5619 fractures; 5285 hip and 4261 knee arthroplasties. In confounder-adjusted models, longer LTL was associated with reduced risk of incident knee arthroplasty in both men (HR/SD 0.93; 95% confidence interval [CI], 0.88-0.97) and women (0.92; 95% CI, 0.88-0.96), and hip arthroplasty in men (0.91; 95% CI, 0.87-0.95), but not women (0.98; 95% CI, 0.94-1.01). Longer LTL was weakly associated with reduced risk of any incident fracture in women (HR/SD 0.96; 95% CI, 0.93-1.00) with less evidence in men (0.98; 95% CI, 0.93-1.02). Associations with incident outcomes were not materially altered by adjustment for heel eBMD, grip strength, gait speed, fat mass, or blood biomarker measures. In this, the largest study to date, longer LTL was associated with lower risk of incident knee or hip arthroplasty, but only weakly associated with lower risk of fracture. The relative risks were low at a population level, but our findings suggest that common factors acting on the myeloid and musculoskeletal systems might influence later life musculoskeletal outcomes. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Arthroplasty, Replacement, Hip , Arthroplasty, Replacement, Knee , Fractures, Bone , Hip Fractures , Osteoporotic Fractures , Female , Male , Humans , Middle Aged , Hand Strength , Biological Specimen Banks , Fractures, Bone/epidemiology , Fractures, Bone/genetics , Bone Density , Telomere , United Kingdom/epidemiology , Risk Factors , Osteoporotic Fractures/epidemiology , Hip Fractures/epidemiology
11.
Lancet Healthy Longev ; 3(5): e321-e331, 2022 05.
Article En | MEDLINE | ID: mdl-35685390

Background: Telomere length is associated with risk of several age-related diseases and cancers. We aimed to investigate the extent to which telomere length might be modifiable through lifestyle and behaviour, and whether such modification has any clinical consequences. Methods: In this population-based study, we included participants from UK Biobank who had leukocyte telomere length (LTL) measurement, ethnicity, and white blood cell count data. We investigated associations of LTL with 117 potentially modifiable traits, as well as two indices of healthy behaviours incorporating between them smoking, physical activity, diet, maintenance of a healthy bodyweight, and alcohol intake, using both available and imputed data. To help interpretation, associations were summarised as the number of equivalent years of age-related change in LTL by dividing the trait ß coefficients with the age ß coefficient. We used mendelian randomisation to test causality of selected associations. We investigated whether the associations of LTL with 22 diseases were modified by the number of healthy behaviours and the extent to which the associations of more healthy behaviours with greater life expectancy and lower risk of coronary artery disease might be mediated through LTL. Findings: 422 797 participants were available for the analysis (227 620 [53·8%] were women and 400 036 [94·6%] were White). 71 traits showed significant (p<4·27 × 10-4) associations with LTL but most were modest, equivalent to less than 1 year of age-related change in LTL. In multivariable analyses of 17 traits with stronger associations (equivalent to ≥2 years of age-related change in LTL), oily fish intake, educational attainment, and general health status retained a significant association of this magnitude, with walking pace and current smoking being additionally significant at this level of association in the imputed models. Mendelian randomisation analysis suggested that educational attainment and smoking behaviour causally affect LTL. Both indices of healthy behaviour were positively and linearly associated with LTL, with those with the most healthy behaviours having longer LTL equivalent to about 3·5 years of age-related change in LTL than those with the least heathy behaviours (p<0·001). However, healthy behaviours explained less than 0·2% of the total variation in LTL and did not significantly modify the association of LTL with risk of any of the diseases studied. Neither the association of more healthy behaviours on greater life expectancy or lower risk of coronary artery disease were substantially mediated through LTL. Interpretation: Although several potentially modifiable traits and healthy behaviours have a quantifiable association with LTL, at least some of which are likely to be causal, these effects are not of a sufficient magnitude to substantially alter the association between LTL and various diseases or life expectancy. Attempts to change telomere length through lifestyle or behavioural changes might not confer substantial clinical benefit. Funding: UK Medical Research Council, UK Biotechnology and Biological Sciences Research Council, and British Heart Foundation.


Coronary Artery Disease , Telomere , Biological Specimen Banks , Female , Health Behavior , Health Status , Humans , Leukocytes , Male , Mendelian Randomization Analysis , United Kingdom
13.
J Bodyw Mov Ther ; 30: 118-124, 2022 04.
Article En | MEDLINE | ID: mdl-35500959

Telomeres are dynamic structures that appear to be positively influenced by healthy lifestyle factors such as exercise. Pilates is an increasingly popular exercise modality that is reported to exert beneficial physiological effects in the body, although the cellular mechanisms are poorly understood. The aim of the present study was to investigate the influence of Pilates exercise on telomere length. This longitudinal study followed experienced female Pilates practitioners (n = 11, 50.8 ± 7.5 years) and healthy age- and sex-matched sedentary controls (n = 11, 49.3 ± 6.1 years) over a 12-month period. Leukocyte telomere length was quantified using qPCR. Circulatory inflammatory markers, mRNA gene expression, body composition, physical performance, and mental well-being were also assessed. Telomere length was comparable between Pilates practitioners and controls at baseline (Pre) and 12-months (Post) (p > 0.0125). Pilates practitioners displayed enhanced mRNA gene expression of antioxidant enzymes (SOD2 and GPX1), and lower body fat percentage and visceral fat rating, compared with sedentary controls (p < 0.0125). Over the 12-month longitudinal period, Pilates participants significantly increased dynamic balance (p < 0.05). In conclusion, long-term Pilates participation does not appear to influence telomere length. Nonetheless, Pilates exercise appears to increase antioxidant enzyme gene expression, effectively manage body composition, and improve dynamic balance.


Antioxidants , Body Composition , Body Composition/physiology , Female , Humans , Longitudinal Studies , RNA, Messenger , Telomere
14.
Sci Adv ; 8(14): eabl6579, 2022 Apr 08.
Article En | MEDLINE | ID: mdl-35385311

Human genetic studies support an inverse causal relationship between leukocyte telomere length (LTL) and coronary artery disease (CAD), but directionally mixed effects for LTL and diverse malignancies. Clonal hematopoiesis of indeterminate potential (CHIP), characterized by expansion of hematopoietic cells bearing leukemogenic mutations, predisposes both hematologic malignancy and CAD. TERT (which encodes telomerase reverse transcriptase) is the most significantly associated germline locus for CHIP in genome-wide association studies. Here, we investigated the relationship between CHIP, LTL, and CAD in the Trans-Omics for Precision Medicine (TOPMed) program (n = 63,302) and UK Biobank (n = 47,080). Bidirectional Mendelian randomization studies were consistent with longer genetically imputed LTL increasing propensity to develop CHIP, but CHIP then, in turn, hastens to shorten measured LTL (mLTL). We also demonstrated evidence of modest mediation between CHIP and CAD by mLTL. Our data promote an understanding of potential causal relationships across CHIP and LTL toward prevention of CAD.

15.
Commun Biol ; 5(1): 381, 2022 04 20.
Article En | MEDLINE | ID: mdl-35444173

Walking pace is a simple and functional form of movement and a strong predictor of health status, but the nature of its association with leucocyte telomere length (LTL) is unclear. Here we investigate whether walking pace is associated with LTL, which is causally associated with several chronic diseases and has been proposed as a marker of biological age. Analyses were conducted in 405,981 UK Biobank participants. We show that steady/average and brisk walkers had significantly longer LTL compared with slow walkers, with accelerometer-assessed measures of physical activity further supporting this through an association between LTL and habitual activity intensity, but not with total amount of activity. Bi-directional mendelian randomisation analyses suggest a causal link between walking pace and LTL, but not the other way around. A faster walking pace may be causally associated with longer LTL, which could help explain some of the beneficial effects of brisk walking on health status. Given its simple measurement and low heritability, self-reported walking pace may be a pragmatic target for interventions.


Biological Specimen Banks , Walking Speed , Humans , Self Report , Telomere/genetics , United Kingdom
16.
J Cachexia Sarcopenia Muscle ; 13(3): 1741-1751, 2022 06.
Article En | MEDLINE | ID: mdl-35297226

BACKGROUND: Frailty is a multidimensional syndrome of decline that affects multiple systems and predisposes to adverse health outcomes. Although chronological age is the major risk factor, inter-individual variation in risk is not fully understood. Leucocyte telomere length (LTL), a proposed marker of biological age, has been associated with risk of many diseases. We sought to determine whether LTL is associated with risk of frailty. METHODS: We utilized cross-sectional data from 441 781 UK Biobank participants (aged 40-69 years), with complete data on frailty indicators and LTL. Frailty was defined as the presence of at least three of five indicators: weaker grip strength, slower walking pace, weight loss in the past year, lower physical activity, and exhaustion in the past 2 weeks. LTL was measured using a validated qPCR method and reported as a ratio of the telomere repeat number (T) to a single-copy gene (S) (T/S ratio). Association of LTL with frailty was evaluated using adjusted (chronological age, sex, deprivation, smoking, alcohol intake, body mass index, and multimorbidity) multinomial and ordinal regression models, and results are presented as relative risk (RRR) or odds ratios (OR), respectively, alongside the 95% confidence interval (CI). Mendelian randomization (MR), using 131 genetic variants associated with LTL, was used to assess if the association of LTL with frailty was causal. RESULTS: Frail participants (4.6%) were older (median age difference (95% CI): 3 (2.5; 3.5) years, P = 2.73 × 10-33 ), more likely to be female (61%, P = 1.97 × 10-129 ), and had shorter LTL (-0.13SD vs. 0.03SD, P = 5.43 × 10-111 ) than non-frail. In adjusted analyses, both age and LTL were associated with frailty (RRR = 1.03 (95% CI: 1.02; 1.04) per year of older chronological age, P = 3.99 × 10-12 ; 1.10 (1.08; 1.11) per SD shorter LTL, P = 1.46 × 10-30 ). Within each age group (40-49, 50-59, 60-69 years), the prevalence of frailty was about 33% higher in participants with shorter (-2SD) versus longer telomeres (+2SD). MR analysis showed an association of LTL with frailty that was directionally consistent with the observational association, but not statistically significant (MR-Median: OR (95% CI): 1.08 (0.98; 1.19) per SD shorter LTL, P = 0.13). CONCLUSIONS: Inter-individual variation in LTL is associated with the risk of frailty independently of chronological age and other risk factors. Our findings provide evidence for an additional biological determinant of frailty.


Frailty , Adult , Cross-Sectional Studies , Female , Frailty/epidemiology , Frailty/genetics , Humans , Leukocytes , Male , Risk Factors , Telomere/genetics
17.
J Aging Phys Act ; 30(3): 510-516, 2022 06 01.
Article En | MEDLINE | ID: mdl-34564066

It is unclear how running modality influences telomere length (TL). This single laboratory visit study compared the TL of master sprinters and endurance runners with their young counterparts. The correlation between leukocyte and buccal cell TL in athletes was also explored. Participants consisted of 11 young controls, 11 young sprinters, 12 young endurance runners, 12 middle-aged controls, 11 master sprinters, and 12 master endurance runners. Blood and buccal samples were collected and randomized for analysis of TL by quantitative polymerase chain reaction. Young endurance runners displayed longer telomeres than master athletes (p < .05); however, these differences were not significant when controlled for covariates (p > .05). A positive correlation existed between leukocyte and buccal cell TL in athletes (r = .567, p < .001). In conclusion, young endurance runners possess longer telomeres than master endurance runners and sprinters, a consequence of lower body mass index and visceral fat.


Running , Athletes , Humans , Middle Aged , Nutritional Status , Physical Endurance/genetics , Telomere
18.
Heart ; 108(2): 124-129, 2022 01.
Article En | MEDLINE | ID: mdl-33789973

OBJECTIVE: Patients with heart failure have shorter mean leucocyte telomere length (LTL), a marker of biological age, compared with healthy subjects, but it is unclear whether this is of prognostic significance. We therefore sought to determine whether LTL is associated with outcomes in patients with heart failure. METHODS: We measured LTL in patients with heart failure from the BIOSTAT-CHF Index (n=2260) and BIOSTAT-CHF Tayside (n=1413) cohorts. Cox proportional hazards analyses were performed individually in each cohort and the estimates combined using meta-analysis. Our co-primary endpoints were all-cause mortality and heart failure hospitalisation. RESULTS: In age-adjusted and sex-adjusted analyses, shorter LTL was associated with higher all-cause mortality in both cohorts individually and when combined (meta-analysis HR (per SD decrease in LTL)=1.16 (95% CI 1.08 to 1.24); p=2.66×10-5), an effect equivalent to that of being four years older. The association remained significant after adjustment for the BIOSTAT-CHF clinical risk score to account for known prognostic factors (HR=1.12 (95% CI 1.05 to 1.20); p=1.04×10-3). Shorter LTL was associated with both cardiovascular (HR=1.09 (95% CI 1.00 to 1.19); p=0.047) and non-cardiovascular deaths (HR=1.18 (95% CI 1.05 to 1.32); p=4.80×10-3). There was no association between LTL and heart failure hospitalisation (HR=0.99 (95% CI 0.92 to 1.07); p=0.855). CONCLUSION: In patients with heart failure, shorter mean LTL is independently associated with all-cause mortality.


Heart Failure , Telomere , Chronic Disease , Cohort Studies , Heart Failure/diagnosis , Heart Failure/genetics , Humans , Leukocytes , Risk Factors , Telomere/genetics
19.
Nat Genet ; 53(10): 1425-1433, 2021 10.
Article En | MEDLINE | ID: mdl-34611362

Telomeres, the end fragments of chromosomes, play key roles in cellular proliferation and senescence. Here we characterize the genetic architecture of naturally occurring variation in leukocyte telomere length (LTL) and identify causal links between LTL and biomedical phenotypes in 472,174 well-characterized UK Biobank participants. We identified 197 independent sentinel variants associated with LTL at 138 genomic loci (108 new). Genetically determined differences in LTL were associated with multiple biological traits, ranging from height to bone marrow function, as well as several diseases spanning neoplastic, vascular and inflammatory pathologies. Finally, we estimated that, at the age of 40 years, people with an LTL >1 s.d. shorter than the population mean had a 2.5-year-lower life expectancy compared with the group with ≥1 s.d. longer LDL. Overall, we furnish new insights into the genetic regulation of LTL, reveal wide-ranging influences of LTL on physiological traits, diseases and longevity, and provide a powerful resource available to the global research community.


Multifactorial Inheritance/genetics , Telomere Homeostasis/genetics , Genome, Human , Genome-Wide Association Study , Humans , Mendelian Randomization Analysis , Quantitative Trait Loci
20.
Elife ; 102021 09 21.
Article En | MEDLINE | ID: mdl-34545807

Human herpesviruses 6A and 6B (HHV-6A/6B) are ubiquitous pathogens that persist lifelong in latent form and can cause severe conditions upon reactivation. They are spread by community-acquired infection of free virus (acqHHV6A/6B) and by germline transmission of inherited chromosomally integrated HHV-6A/6B (iciHHV-6A/6B) in telomeres. We exploited a hypervariable region of the HHV-6B genome to investigate the relationship between acquired and inherited virus and revealed predominantly maternal transmission of acqHHV-6B in families. Remarkably, we demonstrate that some copies of acqHHV-6B in saliva from healthy adults gained a telomere, indicative of integration and latency, and that the frequency of viral genome excision from telomeres in iciHHV-6B carriers is surprisingly high and varies between tissues. In addition, newly formed short telomeres generated by partial viral genome release are frequently lengthened, particularly in telomerase-expressing pluripotent cells. Consequently, iciHHV-6B carriers are mosaic for different iciHHV-6B structures, including circular extra-chromosomal forms that have the potential to reactivate. Finally, we show transmission of an HHV-6B strain from an iciHHV-6B mother to her non-iciHHV-6B son. Altogether, we demonstrate that iciHHV-6B can readily transition between telomere-integrated and free virus forms.


DNA, Viral/genetics , Genome, Viral , Herpesvirus 6, Human/genetics , Telomere/genetics , Virus Integration , Female , Humans , Infectious Disease Transmission, Vertical , Male , Saliva/virology
...