Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Cell Rep ; 43(3): 113897, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38493478

Chromatin structure is regulated through posttranslational modifications of histone variants that modulate transcription. Although highly homologous, histone variants display unique amino acid sequences associated with specific functions. Abnormal incorporation of histone variants contributes to cancer initiation, therapy resistance, and metastasis. This study reports that, among its biologic functions, histone H3.1 serves as a chromatin redox sensor that is engaged by mitochondrial H2O2. In breast cancer cells, the oxidation of H3.1Cys96 promotes its eviction and replacement by H3.3 in specific promoters. We also report that this process facilitates the opening of silenced chromatin domains and transcriptional activation of epithelial-to-mesenchymal genes associated with cell plasticity. Scavenging nuclear H2O2 or amino acid substitution of H3.1(C96S) suppresses plasticity, restores sensitivity to chemotherapy, and induces remission of metastatic lesions. Hence, it appears that increased levels of H2O2 produced by mitochondria of breast cancer cells directly promote redox-regulated H3.1-dependent chromatin remodeling involved in chemoresistance and metastasis.


Breast Neoplasms , Histones , Humans , Female , Histones/metabolism , Chromatin , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Drug Resistance, Multiple , Breast Neoplasms/genetics
2.
iScience ; 26(4): 106442, 2023 Apr 21.
Article En | MEDLINE | ID: mdl-37020964

Suppressor of cytokine signaling-1 (SOCS1) exerts control over inflammation by targeting p65 nuclear factor-κB (NF-κB) for degradation in addition to its canonical role regulating cytokine signaling. We report here that SOCS1 does not operate on all p65 targets equally, instead localizing to a select subset of pro-inflammatory genes. Promoter-specific interactions of SOCS1 and p65 determine the subset of genes activated by NF-κB during systemic inflammation, with profound consequences for cytokine responses, immune cell mobilization, and tissue injury. Nitric oxide synthase-1 (NOS1)-derived nitric oxide (NO) is required and sufficient for the displacement of SOCS1 from chromatin, permitting full inflammatory transcription. Single-cell transcriptomic analysis of NOS1-deficient animals led to detection of a regulatory macrophage subset that exerts potent suppression on inflammatory cytokine responses and tissue remodeling. These results provide the first example of a redox-sensitive, gene-specific mechanism for converting macrophages from regulating inflammation to cells licensed to promote aggressive and potentially injurious inflammation.

3.
Proc Natl Acad Sci U S A ; 119(29): e2110348119, 2022 07 19.
Article En | MEDLINE | ID: mdl-35858297

The dichotomous behavior of superoxide dismutase-2 (SOD2) in cancer biology has long been acknowledged and more recently linked to different posttranslational forms of the enzyme. However, a distinctive activity underlying its tumor-promoting function is yet to be described. Here, we report that acetylation, one of such posttranslational modifications (PTMs), increases SOD2 affinity for iron, effectively changing the biochemical function of this enzyme from that of an antioxidant to a demethylase. Acetylated, iron-bound SOD2 localizes to the nucleus, promoting stem cell gene expression via removal of suppressive epigenetic marks such as H3K9me3 and H3K927me3. Particularly, H3K9me3 was specifically removed from regulatory regions upstream of Nanog and Oct-4, two pluripotency factors involved in cancer stem cell reprogramming. Phenotypically, cells expressing nucleus-targeted SOD2 (NLS-SOD2) have increased clonogenicity and metastatic potential. FeSOD2 operating as H3 demethylase requires H2O2 as substrate, which unlike cofactors of canonical demethylases (i.e., oxygen and 2-oxoglutarate), is more abundant in tumor cells than in normal tissue. Therefore, our results indicate that FeSOD2 is a demethylase with unique activities and functions in the promotion of cancer evolution toward metastatic phenotypes.


Breast Neoplasms , Cell Nucleus , Histone Demethylases , Iron , Neoplastic Stem Cells , Superoxide Dismutase , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Cell Nucleus/enzymology , Histone Demethylases/genetics , Histone Demethylases/metabolism , Hydrogen Peroxide/metabolism , Iron/metabolism , Neoplastic Stem Cells/enzymology , Neoplastic Stem Cells/pathology , Protein Processing, Post-Translational , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
4.
Methods Mol Biol ; 2409: 39-46, 2022.
Article En | MEDLINE | ID: mdl-34709634

It is well known that glycosylations of Dengue NS1 protein are important for its structure, oligomerization, and immunogenicity. One of the major challenges in heterologous NS1 protein expression is the difference in glycosylation patterns amongst different organisms. The two major natural hosts for Dengue virus are humans and mosquitoes, which are capable of producing very complex glycosylation motifs. This chapter presents an optimized protocol for heterologous expression and purification of Dengue NS1 protein in Sf9 cells infected with baculovirus. NS1 protein obtained from this protocol is glycosylated and capable of forming soluble hexamers that can be used for structural and functional assays.


Dengue Virus , Animals , Baculoviridae/genetics , Baculoviridae/metabolism , Cell Line , Dengue , Dengue Virus/genetics , Dengue Virus/metabolism , Glycosylation , Humans , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
5.
Oncogene ; 40(36): 5455-5467, 2021 09.
Article En | MEDLINE | ID: mdl-34290400

Epidemiologic studies in diabetic patients as well as research in model organisms have indicated the potential of metformin as a drug candidate for the treatment of various types of cancer, including breast cancer. To date most of the anti-cancer properties of metformin have, in large part, been attributed either to the inhibition of mitochondrial NADH oxidase complex (Complex I in the electron transport chain) or the activation of AMP-activated kinase (AMPK). However, it is becoming increasingly clear that AMPK activation may be critical to alleviate metabolic and energetic stresses associated with tumor progression suggesting that it may, in fact, attenuate the toxicity of metformin instead of promoting it. Here, we demonstrate that AMPK opposes the detrimental effects of mitochondrial complex I inhibition by enhancing glycolysis at the expense of, and in a manner dependent on, pyruvate availability. We also found that metformin forces cells to rewire their metabolic grid in a manner that depends on AMPK, with AMPK-competent cells upregulating glycolysis and AMPK-deficient cell resorting to ketogenesis. In fact, while the killing effects of metformin were largely rescued by pyruvate in AMPKcompetent cells, AMPK-deficient cells required instead acetoacetate, a product of fatty acid catabolism indicating a switch from sugar to fatty acid metabolism as a central resource for ATP production in these cells. In summary, our results indicate that AMPK activation is not responsible for metformin anticancer activity and may instead alleviate energetic stress by activating glycolysis.


AMP-Activated Protein Kinases , Metformin , Breast Neoplasms , Carbohydrate Metabolism , Energy Metabolism , Glycolysis , Humans
6.
J Exp Med ; 218(9)2021 09 06.
Article En | MEDLINE | ID: mdl-34292314

Besides antigen-specific responses to viral antigens, humoral immune response in virus infection can generate polyreactive and autoreactive antibodies. Dengue and Zika virus infections have been linked to antibody-mediated autoimmune disorders, including Guillain-Barré syndrome. A unique feature of flaviviruses is the secretion of nonstructural protein 1 (NS1) by infected cells. NS1 is highly immunogenic, and antibodies targeting NS1 can have both protective and pathogenic roles. In the present study, we investigated the humoral immune response to Zika virus NS1 and found NS1 to be an immunodominant viral antigen associated with the presence of autoreactive antibodies. Through single B cell cultures, we coupled binding assays and BCR sequencing, confirming the immunodominance of NS1. We demonstrate the presence of self-reactive clones in germinal centers after both infection and immunization, some of which present cross-reactivity with NS1. Sequence analysis of anti-NS1 B cell clones showed sequence features associated with pathogenic autoreactive antibodies. Our findings demonstrate NS1 immunodominance at the cellular level as well as a potential role for NS1 in ZIKV-associated autoimmune manifestations.


Cross Reactions/immunology , Viral Nonstructural Proteins/immunology , Zika Virus Infection/immunology , Animals , Antibodies, Viral/immunology , Antigens, Viral/immunology , B-Lymphocytes/virology , Female , Germinal Center/pathology , Germinal Center/virology , Immunization , Immunoglobulin M/blood , Mice, Inbred BALB C , Viral Nonstructural Proteins/blood , Zika Virus Infection/virology
7.
J Virol ; 95(13): e0197420, 2021 06 10.
Article En | MEDLINE | ID: mdl-33827950

Dengue is a mosquito-borne infectious disease that is highly endemic in tropical and subtropical countries. Symptomatic patients can rapidly progress to severe conditions of hemorrhage, plasma extravasation, and hypovolemic shock, which leads to death. The blood tests of patients with severe dengue typically reveal low levels of high-density lipoprotein (HDL), which is responsible for reverse cholesterol transport (RCT) and regulation of the lipid composition in peripheral tissues. It is well known that dengue virus (DENV) depends on membrane cholesterol rafts to infect and to replicate in mammalian cells. Here, we describe the interaction of DENV nonstructural protein 1 (NS1) with apolipoprotein A1 (ApoA1), which is the major protein component of HDL. NS1 is secreted by infected cells and can be found circulating in the serum of patients with the onset of symptoms. NS1 concentrations in plasma are related to dengue severity, which is attributed to immune evasion and an acute inflammatory response. Our data show that the DENV NS1 protein induces an increase of lipid rafts in noninfected cell membranes and enhances further DENV infection. We also show that ApoA1-mediated lipid raft depletion inhibits DENV attachment to the cell surface. In addition, ApoA1 is able to neutralize NS1-induced cell activation and to prevent NS1-mediated enhancement of DENV infection. Furthermore, we demonstrate that the ApoA1 mimetic peptide 4F is also capable of mediating lipid raft depletion to control DENV infection. Taken together, our results suggest the potential of RCT-based therapies for dengue treatment. These results should motivate studies to assess the importance of RCT in DENV infection in vivo. IMPORTANCE DENV is one of the most relevant mosquito-transmitted viruses worldwide, infecting more than 390 million people every year and leading to more than 20 thousand deaths. Although a DENV vaccine has already been approved, its potential side effects have hampered its use in large-scale immunizations. Therefore, new treatment options are urgently needed to prevent disease worsening or to improve current clinical management of severe cases. In this study, we describe a new interaction of the NS1 protein, one of the major viral components, with a key component of HDL, ApoA1. This interaction seems to alter membrane susceptibility to virus infection and modulates the mechanisms triggered by DENV to evade the immune response. We also propose the use of a mimetic peptide named 4F, which was originally developed for atherosclerosis, as a potential therapy for relieving DENV symptoms.


Apolipoprotein A-I/immunology , Dengue Virus/metabolism , Immune Evasion/immunology , Membrane Microdomains/metabolism , Viral Nonstructural Proteins/immunology , Animals , Antiviral Agents/pharmacology , Cell Line , Cholesterol/metabolism , Dengue/pathology , Humans , Inflammation/prevention & control , Mice , Peptides/pharmacology , RAW 264.7 Cells , Virus Attachment/drug effects
8.
Antioxid Redox Signal ; 32(10): 701-714, 2020 04 01.
Article En | MEDLINE | ID: mdl-31968997

Significance: Reactive oxygen species (ROS) are now widely recognized as central mediators of cell signaling. Mitochondria are major sources of ROS. Recent Advances: It is now clear that mitochondrial ROS are essential to activate responses to cellular microenvironmental stressors. Mediators of these responses reside in large part in the cytosol. Critical Issues: The primary form of ROS produced by mitochondria is the superoxide radical anion. As a charged radical anion, superoxide is restricted in its capacity to diffuse and convey redox messages outside of mitochondria. In addition, superoxide is a reductant and not particularly efficient at oxidizing targets. Because there are many opportunities for superoxide to be neutralized in mitochondria, it is not completely clear how redox cues generated in mitochondria are converted into diffusible signals that produce transient oxidative modifications in the cytosol or nucleus. Future Directions: To efficiently intervene at the level of cellular redox signaling, it seems that understanding how the generation of superoxide radicals in mitochondria is coupled with the propagation of redox messages is essential. We propose that mitochondrial superoxide dismutase (SOD2) is a major system converting diffusion-restricted superoxide radicals derived from the electron transport chain into highly diffusible hydrogen peroxide (H2O2). This enables the coupling of metabolic changes resulting in increased superoxide to the production of H2O2, a diffusible secondary messenger. As such, to determine whether there are other systems coupling metabolic changes to redox messaging in mitochondria as well as how these systems are regulated is essential.


Mitochondria/metabolism , Superoxide Dismutase/metabolism , Animals , Humans , Hydrogen Peroxide/metabolism , Mitochondria/enzymology , Oxidation-Reduction
9.
Sci Rep ; 9(1): 2651, 2019 02 25.
Article En | MEDLINE | ID: mdl-30804377

Dengue is an important mosquito-borne disease and a global public health problem. The disease is caused by dengue virus (DENV), which is a member of the Flaviviridae family and contains a positive single-stranded RNA genome that encodes a single precursor polyprotein that is further cleaved into structural and non-structural proteins. Among these proteins, the non-structural 3 (NS3) protein is very important because it forms a non-covalent complex with the NS2B cofactor, thereby forming the functional viral protease. NS3 also contains a C-terminal ATPase/helicase domain that is essential for RNA replication. Here, we identified 47 NS3-interacting partners using the yeast two-hybrid system. Among those partners, we highlight several proteins involved in host energy metabolism, such as apolipoprotein H, aldolase B, cytochrome C oxidase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). GAPDH directly binds full-length NS3 and its isolated helicase and protease domains. Moreover, we observed an intense colocalization between the GAPDH and NS3 proteins in DENV2-infected Huh7.5.1 cells, in NS3-transfected BHK-21 cells and in hepatic tissue from a fatal dengue case. Taken together, these results suggest that the human GAPDH-DENV NS3 interaction is involved in hepatic metabolic alterations, which may contribute to the appearance of steatosis in dengue-infected patients. The interaction between GAPDH and full-length NS3 or its helicase domain in vitro as well as in NS3-transfected cells resulted in decreased GAPDH glycolytic activity. Reduced GAPDH glycolytic activity may lead to the accumulation of metabolic intermediates, shifting metabolism to alternative, non-glycolytic pathways. This report is the first to identify the interaction of the DENV2 NS3 protein with the GAPDH protein and to demonstrate that this interaction may play an important role in the molecular mechanism that triggers hepatic alterations.


Dengue Virus/physiology , Dengue/metabolism , Dengue/virology , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/metabolism , Host-Pathogen Interactions , Viral Nonstructural Proteins/metabolism , Animals , Biomarkers , Cell Line , Fluorescent Antibody Technique , Glycolysis , Humans , Immunohistochemistry , Kinetics , Liver/metabolism , Liver/virology , Protein Binding , RNA Helicases/metabolism , Serine Endopeptidases/metabolism
10.
J Virol ; 89(23): 11871-83, 2015 Dec.
Article En | MEDLINE | ID: mdl-26378175

UNLABELLED: Dengue is one of the main public health concerns worldwide. Recent estimates indicate that over 390 million people are infected annually with the dengue virus (DENV), resulting in thousands of deaths. Among the DENV nonstructural proteins, the NS1 protein is the only one whose function during replication is still unknown. NS1 is a 46- to 55-kDa glycoprotein commonly found as both a membrane-associated homodimer and a soluble hexameric barrel-shaped lipoprotein. Despite its role in the pathogenic process, NS1 is essential for proper RNA accumulation and virus production. In the present study, we identified that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with intracellular NS1. Molecular docking revealed that this interaction occurs through the hydrophobic protrusion of NS1 and the hydrophobic residues located at the opposite side of the catalytic site. Moreover, addition of purified recombinant NS1 enhanced the glycolytic activity of GAPDH in vitro. Interestingly, we observed that DENV infection promoted the relocalization of GAPDH to the perinuclear region, where NS1 is commonly found. Both DENV infection and expression of NS1 itself resulted in increased GAPDH activity. Our findings indicate that the NS1 protein acts to increase glycolytic flux and, consequently, energy production, which is consistent with the recent finding that DENV induces and requires glycolysis for proper replication. This is the first report to propose that NS1 is an important modulator of cellular energy metabolism. The data presented here provide new insights that may be useful for further drug design and the development of alternative antiviral therapies against DENV. IMPORTANCE: Dengue represents a serious public health problem worldwide and is caused by infection with dengue virus (DENV). Estimates indicate that half of the global population is at risk of infection, with almost 400 million cases occurring per year. The NS1 glycoprotein is found in both the intracellular and the extracellular milieus. Despite the fact that NS1 has been commonly associated with DENV pathogenesis, it plays a pivotal but unknown role in the replication process. In an effort to understand the role of intracellular NS1, we demonstrate that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with NS1. Our results indicate that NS1 increases the glycolytic activity of GAPDH in vitro. Interestingly, the GAPDH activity was increased during DENV infection, and NS1 expression alone was sufficient to enhance intracellular GAPDH activity in BHK-21 cells. Overall, our findings suggest that NS1 is an important modulator of cellular energy metabolism by increasing glycolytic flux.


Energy Metabolism/physiology , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/metabolism , Models, Molecular , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Analysis of Variance , Animals , Cell Line , Chromatography, Liquid , Cricetinae , Enzyme-Linked Immunosorbent Assay , Human Umbilical Vein Endothelial Cells , Humans , Immunoprecipitation , Microscopy, Fluorescence , Protein Binding , Tandem Mass Spectrometry , Viral Nonstructural Proteins/genetics
...