Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pediatr Nephrol ; 38(12): 4145-4156, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37466864

RESUMEN

BACKGROUND: Collagen X biomarker (CXM) is a novel biomarker of linear growth velocity. We investigated whether CXM correlated with measured growth velocity in children with impaired kidney function. METHODS: We used data from children aged 2 through 16 years old enrolled in the Chronic Kidney Disease in Children (CKiD) study. We assessed the association between CXM level and growth velocity based on height measurements obtained at study visits using linear regression models constructed separately by sex, with and without adjustment for CKD covariates. Linear mixed-effects models were used to capture the between-individual and within-individual CXM changes over time associated with concomitant changes in growth velocity from baseline through follow-up. RESULTS: A total of 967 serum samples from 209 participants were assayed for CXM. CXM correlated more strongly in females compared to male participants. After adjustment for growth velocity and CKD covariates, only proteinuria in male participants affected CXM levels. Finally, we quantified the between- and within-participant associations between CXM level and growth velocity. A between-participant increase of 24% and 15% in CXM level in females and males, respectively, correlated with a 1 cm/year higher growth velocity. Within an individual participant, on average, 28% and 13% increases in CXM values in females and males, respectively, correlated with a 1 cm/year change in measured growth. CONCLUSIONS: CXM measurement is potentially a valuable aid for monitoring growth in pediatric CKD. However, future research, including studies of CXM metabolism, is needed to clarify whether CXM can be a surrogate of growth in children with CKD. A higher resolution version of the Graphical abstract is available as Supplementary information.


Asunto(s)
Insuficiencia Renal Crónica , Femenino , Humanos , Niño , Masculino , Adolescente , Insuficiencia Renal Crónica/diagnóstico , Biomarcadores , Colágeno , Proteinuria/etiología
2.
Bone ; 175: 116838, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37454964

RESUMEN

Diastrophic dysplasia (DTD) is a recessive chondrodysplasia caused by pathogenic variants in the SLC26A2 gene encoding for a cell membrane sulfate/chloride antiporter crucial for sulfate uptake and glycosaminoglycan (GAG) sulfation. Research on a DTD animal model has suggested possible pharmacological treatment approaches. In view of future clinical trials, the identification of non-invasive biomarkers is crucial to assess the efficacy of treatments. Urinary GAG composition has been analyzed in several metabolic disorders including mucopolysaccharidoses. Moreover, the N-terminal fragment of collagen X, known as collagen X marker (CXM), is considered a real-time marker of endochondral ossification and growth velocity and was studied in individuals with achondroplasia and osteogenesis imperfecta. In this work, urinary GAG sulfation and blood CXM levels were investigated as potential biomarkers for individuals affected by DTD. Chondroitin sulfate disaccharide analysis was performed on GAGs isolated from urine by HPLC after GAG digestion with chondroitinase ABC and ACII, while CXM was assessed in dried blood spots. Results from DTD patients were compared with an age-matched control population. Undersulfation of urinary GAGs was observed in DTD patients with some relationship to the clinical severity and underlying SLC26A2 variants. Lower than normal CXM levels were observed in most patients, even if the marker did not show a clear pattern in our small patient cohort because CXM values are highly dependent on age, gender and growth velocity. In summary, both non-invasive biomarkers are promising assays targeting various aspects of the disorder including overall metabolism of sulfated GAGs and endochondral ossification.


Asunto(s)
Acondroplasia , Proteínas de Transporte de Anión , Animales , Proteínas de Transporte de Anión/genética , Transportadores de Sulfato , Glicosaminoglicanos , Biomarcadores , Colágeno/metabolismo , Sulfatos/metabolismo
3.
Am J Vet Res ; 84(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37044374

RESUMEN

OBJECTIVE: To advance the understanding of how alterations in exercise speed and grade (flat vs 17° incline or decline) affect the quality of tendon healing, and to determine if a biomarker relationship exists between serum levels of a ColX breakdown product (CXM) and animals exposed to treadmill running protocols. ANIMALS: 35 male mice (C57BL/6J), 8 weeks of age. PROCEDURES: Mice were preconditioned on a treadmill for 14 days. Tendinopathy was then induced by 2 intra-tendinous TGFß1 injections followed by randomization into 7 exercise groups. Exercise capacity and objective gait analysis were measured weekly. Mice were euthanized and histopathologic analysis and evaluation of serum CXM levels were performed. Statistics were conducted using a 2-way ANOVA (exercise capacity), Mixed Effects Model (gait analysis, effect of preconditioning), and 1-way ANOVA (gait analysis, the effect of injury, and rehabilitation normalized to baseline; CXM serum analysis), all with Tukey post hoc tests and significance set to P < .05. RESULTS: Exercise at a fast-flat speed demonstrated inferior tendinopathic healing at the cellular level and impaired stance braking abilities, which were compensated for by increased propulsion. Mice exposed to exercise (at any speed or grade) demonstrated higher systemic levels of CXM than those that were cage rested. However, no ColX immunostaining was observed in the Achilles tendon or calcaneal insertion. CLINICAL RELEVANCE: Exercise at a fast speed and in absence of eccentric loading components (incline or decline) demonstrated inferior tendinopathic healing at the cellular level and impaired braking abilities that were compensated for by increased propulsion.


Asunto(s)
Tendón Calcáneo , Enfermedades Musculoesqueléticas , Tendinopatía , Masculino , Ratones , Animales , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Tendinopatía/terapia , Tendinopatía/veterinaria , Enfermedades Musculoesqueléticas/patología , Enfermedades Musculoesqueléticas/veterinaria , Tendón Calcáneo/metabolismo , Tendón Calcáneo/patología
4.
Mol Ther ; 31(2): 420-434, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36245128

RESUMEN

An estimated 100,000 patients each year in the United States suffer severe disability from bone defects that fail to heal, a condition where bone-regenerative therapies could provide substantial clinical benefits. Although recombinant human bone morphogenetic protein-2 (rhBMP2) is an osteogenic growth factor that is clinically approved for this purpose, it is only effective when used at exceedingly high doses that incur substantial costs, induce severe inflammation, produce adverse side effects, and form morphologically abnormal bone. Using a validated rat femoral segmental defect model, we show that bone formed in response to clinically relevant doses of rhBMP2 is accompanied by elevated expression of interleukin-1 (IL-1). Local delivery of cDNA encoding the IL-1 receptor antagonist (IL-1Ra) achieved bridging of segmental, critical size defects in bone with a 90% lower dose of rhBMP2. Unlike use of high-dose rhBMP2, bone formation in the presence of IL-1Ra occurred via the native process of endochondral ossification, resulting in improved quality without sacrificing the mechanical properties of the regenerated bone. Our results demonstrate that local immunomodulation may permit effective use of growth factors at lower doses to recapitulate more precisely the native biology of healing, leading to higher-quality tissue regeneration.


Asunto(s)
Proteína Antagonista del Receptor de Interleucina 1 , Osteogénesis , Humanos , Ratas , Animales , Osteogénesis/genética , Proteína Antagonista del Receptor de Interleucina 1/genética , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Factor de Crecimiento Transformador beta/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Regeneración Ósea/genética , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/farmacología
5.
Matern Child Nutr ; 19(1): e13417, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36111423

RESUMEN

Inadequate diet and frequent symptomatic infections are considered major causes of growth stunting in low-income countries, but interventions targeting these risk factors have achieved limited success. Asymptomatic infections can restrict growth, but little is known about their role in global stunting prevalence. We investigated factors related to length-for-age Z-score (LAZ) at 24 months by constructing an interconnected network of various infections, biomarkers of inflammation (as assessed by alpha-1-acid glycoprotein [AGP]), and growth (insulin-like growth factor 1 [IGF-1] and collagen X biomarker [CXM]) at 18 months, as well as other children, maternal, and household level factors. Among 604 children, there was a continuous decline in mean LAZ and increased mean length deficit from birth to 24 months. At 18 months of age, the percentage of asymptomatic children who carried each pathogen was: 84.5% enterovirus, 15.5% parechovirus, 7.7% norovirus, 4.6% rhinovirus, 0.6% rotavirus, 69.6% Campylobacter, 53.8% Giardia lamblia, 11.9% malaria parasites, 10.2% Shigella, and 2.7% Cryptosporidium. The mean plasma IGF-1 concentration was 12.5 ng/ml and 68% of the children had systemic inflammation (plasma AGP concentration >1 g/L). Shigella infection was associated with lower LAZ at 24 months through both direct and indirect pathways, whereas enterovirus, norovirus, Campylobacter, Cryptosporidium, and malaria infections were associated with lower LAZ at 24 months indirectly, predominantly through increased systemic inflammation and reduced plasma IGF-1 and CXM concentration at 18 months.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Malaria , Preescolar , Humanos , Lactante , Infecciones Asintomáticas/epidemiología , Biomarcadores , Cryptosporidium/metabolismo , Trastornos del Crecimiento/epidemiología , Inflamación , Factor I del Crecimiento Similar a la Insulina
6.
J Bone Miner Res ; 37(9): 1653-1664, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35838180

RESUMEN

Collagen X biomarker (CXM) is suggested to be a biomarker of linear growth velocity. However, early childhood data are limited. This study examines the relationship of CXM to the linear growth rate and bone development, including the possible modifying effects of vitamin D supplementation. We analyzed a cohort of 276 term-born children participating in the Vitamin D Intervention in Infants (VIDI) study. Infants received 10 µg/d (group-10) or 30 µg/d (group-30) vitamin D3 supplementation for the first 2 years of life. CXM and length were measured at 12 and 24 months of age. Tibial bone mineral content (BMC), volumetric bone mineral density (vBMD), cross-sectional area (CSA), polar moment of inertia (PMI), and periosteal circumference (PsC) were measured using peripheral quantitative computed tomography (pQCT) at 12 and 24 months. We calculated linear growth as length velocity (cm/year) and the growth rate in length (SD unit). The mean (SD) CXM values were 40.2 (17.4) ng/mL at 12 months and 38.1 (12.0) ng/mL at 24 months of age (p = 0.12). CXM associated with linear growth during the 2-year follow-up (p = 0.041) but not with bone (p = 0.53). Infants in group-30 in the highest tertile of CXM exhibited an accelerated mean growth rate in length compared with the intermediate tertile (mean difference [95% CI] -0.50 [-0.98, -0.01] SD unit, p = 0.044) but not in the group-10 (p = 0.062) at 12 months. Linear association of CXM and growth rate until 12 months was weak, but at 24 months CXM associated with both length velocity (B for 1 increment of √CXM [95% CI] 0.32 [0.12, 0.52] cm/yr, p = 0.002) and growth rate in length (0.20 [0.08, 0.32] SD unit, p = 0.002). To conclude, CXM may not reliably reflect linear growth from birth to 12 months of age, but its correlation with growth velocity improves during the second year of life. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Desarrollo Óseo , Vitamina D , Biomarcadores , Densidad Ósea , Niño , Preescolar , Colecalciferol , Colágeno , Humanos , Lactante , Vitamina D/farmacología
7.
Calcif Tissue Int ; 111(1): 66-72, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35275235

RESUMEN

Collagen X marker (CXM) is a degradation fragment of collagen type X. It is a real-time biomarker of height velocity with established norms. Plasma C-type natriuretic peptide (CNP) and NTproCNP levels have also been found to correlate with growth velocity in the general population and are elevated in individuals with achondroplasia compared with age- and sex-matched controls. Collagen X marker levels in people with fibroblast growth factor receptor 3 (FGFR3)-opathies have never been systematically measured. The objective of this study was to measure CXM in a population of dwarfism caused by FGFR3-opathies. Using the same cohort in which CNP and NTproCNP levels were previously measured, archived serum aliquots from 63 children with achondroplasia, six with hypochondroplasia, and two with thanatophoric dysplasia had CXM concentrations measured. Results were plotted against age- and sex-specific norms, and standard deviation scores were plotted for comparison between clinical diagnoses. CXM levels were significantly decreased (p < 0.0001) in children with achondroplasia compared with age- and sex-matched controls. Temporal patterns of change in CXM levels were sex-dependent. As the FGFR3 pathway was more constitutively active, CXM levels decreased. New tools are emerging to study impact of skeletal dysplasia on growth plate regulation and function.


Asunto(s)
Acondroplasia , Deformidades Congénitas de las Extremidades , Displasia Tanatofórica , Biomarcadores , Niño , Colágeno Tipo X , Femenino , Humanos , Masculino
8.
J Orthop Trauma ; 36(Suppl 2): S32-S39, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35061649

RESUMEN

OBJECTIVES: To use a novel, validated bioassay to monitor serum concentrations of a breakdown product of collagen X in a prospective longitudinal study of patients sustaining isolated tibial plateau fractures. Collagen X is the hallmark extracellular matrix protein present during conversion of soft, cartilaginous callus to bone during endochondral repair. Previous preclinical and clinical studies demonstrated a distinct peak in collagen X biomarker (CXM) bioassay levels after long bone fractures. SETTING: Level 1 academic trauma facility. PATIENTS/PARTICIPANTS: Thirty-six patients; isolated tibial plateau fractures. INTERVENTION: (3) Closed treatment, ex-fix (temporizing/definitive), and open reduction internal fixation. MAIN OUTCOME MEASUREMENTS: Collagen X serum biomarker levels (CXM bioassay). RESULTS: Twenty-two men and 14 women (average age: 46.3 y; 22.6-73.4, SD 13.3) enrolled (16 unicondylar and 20 bicondylar fractures). Twenty-five patients (72.2%) were treated operatively, including 12 (33.3%) provisionally or definitively treated by ex-fix. No difference was found in peak CXM values between sexes or age. Patients demonstrated peak expression near 1000 pg/mL (average: male-986.5 pg/mL, SD 369; female-953.2 pg/mL, SD 576). There was no difference in peak CXM by treatment protocol, external fixator use, or fracture severity (Schatzker). Patients treated with external fixation (P = 0.05) or staged open reduction internal fixation (P = 0.046) critically demonstrated delayed peaks. CONCLUSIONS: Pilot analysis demonstrates a strong CXM peak after fractures commensurate with previous preclinical and clinical studies, which was delayed with staged fixation. This may represent the consequence of delayed construct loading. Further validation requires larger cohorts and long-term follow-up. Collagen X may provide an opportunity to support prospective interventional studies testing novel orthobiologics or fixation techniques. LEVEL OF EVIDENCE: Level II, prospective clinical observational study.


Asunto(s)
Fijación Interna de Fracturas , Fracturas de la Tibia , Biomarcadores , Colágeno , Femenino , Fijación de Fractura , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Estudios Retrospectivos , Fracturas de la Tibia/cirugía , Resultado del Tratamiento
9.
Spine Deform ; 9(3): 645-653, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33403656

RESUMEN

STUDY DESIGN: Prospective comparative study. OBJECTIVES: Evaluate the correlation of CXM with established measures of growth. Theoretically higher CXM levels would correlate with rapid longitudinal bone growth and lower levels with growth cessation. Assessment of growth status in patients with pediatric spinal deformity is critical. The current gold standards for assessing skeletal maturity are based on radiographic measures and have large standard errors (SE). Type X collagen (COLX) is produced in the growing physis during enchondral ossification. CXM is a COLX breakdown product that can be measured in blood products. CXM, thus, is a direct measure of enchondral ossification. METHODS: IRB-approved prospective study. Q6mo anthropometrics and spine PA biplanar slot scanner images including the hand were assessed for major Cobb, Risser score (RS), triradiate cartilage status (TRC), Greulich and Pyle bone age (BA), and Sanders Score (SS). Serial dried blood spots (DBS) to obtain CXM levels were collected 3 consecutive days Q1-2 months based on SS. RESULTS: 47 idiopathic scoliosis patients, Cobb ≥ 20 were enrolled. Mean enrollment age was 11.8 years (range 7.1-16.6 years). 3103 DBS samples were assayed in quadruplicate. CXM results were highly reproducible with a 3% intraassay coefficient of variation (CV), and 12% interassay CV%. The CXM 3-day average was significantly correlated with BA R = 0.9, p < 0.001, RS R = 0.6, p < 0.001, SS R = 0.7, p < 0.001 and with height R = 0.7, p < 0.001. No patient with a CXM level < 5 ng/ml had remaining growth. CONCLUSION: CXM is the first identifiable biomarker specific to longitudinal bone growth. Early results indicate that it is a patient-specific, real-time measure of growth velocity with high correlation to the established anthropometric and radiographic measures of growth. It is predictive of cessation of growth. It is highly reproducible with a low SE. Long-term follow-up is required to determine the ability of CXM to guide clinical decision-making.


Asunto(s)
Escoliosis , Adolescente , Biomarcadores , Niño , Colágeno , Humanos , Estudios Prospectivos , Escoliosis/diagnóstico por imagen , Columna Vertebral/diagnóstico por imagen
10.
J Orthop Res ; 39(1): 53-62, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32533783

RESUMEN

Currently, there are no standardized methods for quantitatively measuring fracture repair. Physicians rely on subjective physical examinations and qualitative evaluation of radiographs to detect mineralized tissue. Since most fractures heal indirectly through a cartilage intermediate, these tools are limited in their diagnostic utility of early repair. Prior to converting to the bone, cartilage undergoes hypertrophic maturation, characterized by the deposition of a provisional collagen X matrix. The objective of this study was to characterize the kinetics of a novel collagen X biomarker relative to other biological measurements of fracture healing using a murine model of endochondral fracture repair in which a closed, mid-shaft tibia fracture was created using the classic drop-weight technique. Serum was collected 5 to 42 days post-fracture in male and female mice and compared to uninjured controls (n = 8-12). Collagen X in the serum was quantified using a recently validated ELISA-based bioassay ("Cxm")1 and compared to genetic and histological markers of fracture healing and inflammation. We found the Cxm biomarker reliably increased from baseline to a statistically unique peak 14 days post-fracture that then resolved to pre-fracture levels by 3 weeks following injury. The shape and timing of the Cxm curve followed the genetic and histological expression of collagen X but did not show a strong correlation with local inflammatory states. Assessment of fracture healing progress is crucial to making correct and timely clinical decisions for patients. This Cxm bioassay represents a minimally invasive, inexpensive technique that could provide reliable information on the biology of the fracture to significantly improve clinical care.


Asunto(s)
Colágeno Tipo X/sangre , Curación de Fractura , Fracturas de la Tibia/sangre , Animales , Biomarcadores/sangre , Femenino , Masculino , Ratones Endogámicos C57BL , Caracteres Sexuales
11.
J Clin Endocrinol Metab ; 106(1): e255-e264, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33034649

RESUMEN

CONTEXT: Height velocity (HV) is difficult to assess because growth is very slow. The current practice of calculating it from measurements taken at several-month intervals is insufficient for managing children with growth disorders. We identified a bone growth by-product (collagen X biomarker, CXM) in blood that in preliminary analysis in healthy children correlated strongly with conventionally determined HV and displayed a pattern resembling published norms for HV vs age. OBJECTIVE: The goal was to confirm our initial observations supporting the utility of CXM as an HV biomarker in a larger number of individuals and establish working reference ranges for future studies. DESIGN, SETTINGS, AND PARTICIPANTS: CXM was assessed in archived blood samples from 302 healthy children and 10 healthy adults yielding 961 CXM measurements. A total of 432 measurements were plotted by age, and sex-specific reference ranges were calculated. Serial values from 116 participants were plotted against observed HV. Matched plasma, serum, and dried blood spot readings were compared. RESULTS: A correlation of blood CXM with conventional HV was confirmed. Scatter plots of CXM vs age showed a similar pattern to current HV norms, and CXM levels demarcated the pubertal growth spurt both in girls and boys. CXM levels differed little in matched serum, plasma, and dried blood spot samples. CONCLUSIONS: Blood CXM offers a potential means to estimate HV in real time. Our results establish sex-specific, working reference ranges for assessing skeletal growth, especially over time. CXM stability in stored samples makes it well suited for retrospective studies.


Asunto(s)
Estatura/fisiología , Desarrollo Infantil/fisiología , Colágeno Tipo X/sangre , Adolescente , Biomarcadores/análisis , Biomarcadores/sangre , Desarrollo Óseo/fisiología , Niño , Preescolar , Colágeno Tipo X/análisis , Endocrinología/métodos , Endocrinología/normas , Femenino , Gráficos de Crecimiento , Humanos , Lactante , Masculino , Pautas de la Práctica en Medicina/normas , Estándares de Referencia , Valores de Referencia , Estados Unidos , Adulto Joven
12.
Sci Transl Med ; 9(419)2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29212713

RESUMEN

Despite its importance as a key parameter of child health and development, growth velocity is difficult to determine in real time because skeletal growth is slow and clinical tools to accurately detect very small increments of growth do not exist. We report discovery of a marker for skeletal growth in infants and children. The intact trimeric noncollagenous 1 (NC1) domain of type X collagen, the marker we designated as CXM for Collagen X Marker, is a degradation by-product of endochondral ossification that is released into the circulation in proportion to overall growth plate activity. This marker corresponds to the rate of linear bone growth at time of measurement. Serum concentrations of CXM plotted against age show a pattern similar to well-established height growth velocity curves and correlate with height growth velocity calculated from incremental height measurements in this study. The CXM marker is stable once collected and can be accurately assayed in serum, plasma, and dried blood spots. CXM testing may be useful for monitoring growth in the pediatric population, especially responses of infants and children with genetic and acquired growth disorders to interventions that target the underlying growth disturbances. The utility of CXM may potentially extend to managing other conditions such as fracture healing, scoliosis, arthritis, or cancer.


Asunto(s)
Desarrollo Óseo/fisiología , Colágeno Tipo X/metabolismo , Curación de Fractura/fisiología , Adulto , Animales , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Ratones , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...