Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
MAbs ; 16(1): 2362789, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38845069

RESUMEN

Bispecific antibodies, including bispecific IgG, are emerging as an important new class of antibody therapeutics. As a result, we, as well as others, have developed engineering strategies designed to facilitate the efficient production of bispecific IgG for clinical development. For example, we have extensively used knobs-into-holes (KIH) mutations to facilitate the heterodimerization of antibody heavy chains and more recently Fab mutations to promote cognate heavy/light chain pairing for efficient in vivo assembly of bispecific IgG in single host cells. A panel of related monospecific and bispecific IgG1 antibodies was constructed and assessed for immunogenicity risk by comparison with benchmark antibodies with known low (Avastin and Herceptin) or high (bococizumab and ATR-107) clinical incidence of anti-drug antibodies. Assay methods used include dendritic cell internalization, T cell proliferation, and T cell epitope identification by in silico prediction and MHC-associated peptide proteomics. Data from each method were considered independently and then together for an overall integrated immunogenicity risk assessment. In toto, these data suggest that the KIH mutations and in vitro assembly of half antibodies do not represent a major risk for immunogenicity of bispecific IgG1, nor do the Fab mutations used for efficient in vivo assembly of bispecifics in single host cells. Comparable or slightly higher immunogenicity risk assessment data were obtained for research-grade preparations of trastuzumab and bevacizumab versus Herceptin and Avastin, respectively. These data provide experimental support for the common practice of using research-grade preparations of IgG1 as surrogates for immunogenicity risk assessment of their corresponding pharmaceutical counterparts.


Asunto(s)
Anticuerpos Biespecíficos , Inmunoglobulina G , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/genética , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina G/genética , Medición de Riesgo , Trastuzumab/inmunología , Trastuzumab/genética , Animales , Bevacizumab/inmunología , Bevacizumab/genética , Mutación
2.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38555476

RESUMEN

Antigen presentation on MHC class II (pMHCII presentation) plays an essential role in the adaptive immune response to extracellular pathogens and cancerous cells. But it can also reduce the efficacy of large-molecule drugs by triggering an anti-drug response. Significant progress has been made in pMHCII presentation modeling due to the collection of large-scale pMHC mass spectrometry datasets (ligandomes) and advances in machine learning. Here, we develop graph-pMHC, a graph neural network approach to predict pMHCII presentation. We derive adjacency matrices for pMHCII using Alphafold2-multimer and address the peptide-MHC binding groove alignment problem with a simple graph enumeration strategy. We demonstrate that graph-pMHC dramatically outperforms methods with suboptimal inductive biases, such as the multilayer-perceptron-based NetMHCIIpan-4.0 (+20.17% absolute average precision). Finally, we create an antibody drug immunogenicity dataset from clinical trial data and develop a method for measuring anti-antibody immunogenicity risk using pMHCII presentation models. Our model increases receiver operating characteristic curve (ROC)-area under the ROC curve (AUC) by 2.57% compared to just filtering peptides by hits in OASis alone for predicting antibody drug immunogenicity.


Asunto(s)
Antígenos de Histocompatibilidad Clase II , Péptidos , Presentación de Antígeno , Antígenos de Histocompatibilidad Clase II/química , Redes Neurales de la Computación , Péptidos/química , Humanos
3.
BioDrugs ; 38(2): 205-226, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38261155

RESUMEN

Monoclonal antibodies (mAbs) have transformed therapeutic strategies for various diseases. Their high specificity to target antigens makes them ideal therapeutic agents for certain diseases. However, a challenge to their application in clinical practice is their potential risk to induce unwanted immune response, termed immunogenicity. This challenge drives the continued efforts to deimmunize these protein therapeutics while maintaining their pharmacokinetic properties and therapeutic efficacy. Because mAbs hold a central position in therapeutic strategies against an array of diseases, the importance of conducting comprehensive immunogenicity risk assessment during the drug development process cannot be overstated. Such assessment necessitates the employment of in silico, in vitro, and in vivo strategies to evaluate the immunogenicity risk of mAbs. Understanding the intricacies of the mechanisms that drive mAb immunogenicity is crucial to improving their therapeutic efficacy and safety and developing the most effective strategies to determine and mitigate their immunogenic risk. This review highlights recent advances in immunogenicity prediction strategies, with a focus on protein engineering strategies used throughout development to reduce immunogenicity.


Asunto(s)
Anticuerpos Monoclonales , Ingeniería de Proteínas , Humanos , Anticuerpos Monoclonales/farmacología
4.
Bioconjug Chem ; 35(2): 174-186, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38050929

RESUMEN

Biotin- and digoxigenin (DIG)-conjugated therapeutic drugs are critical reagents used for the development of anti-drug antibody (ADA) assays for the assessment of immunogenicity. The current practice of generating biotin and DIG conjugates is to label a therapeutic antibody with biotin or DIG via primary amine groups on lysine or N-terminal residues. This approach modifies lysine residues nonselectively, which can impact the ability of an ADA assay to detect those ADAs that recognize epitopes located at or near the modified lysine residue(s). The impact of the lysine modification is considered greater for therapeutic antibodies that have a limited number of lysine residues, such as the variable heavy domain of heavy chain (VHH) antibodies. In this paper, for the first time, we report the application of site-specifically conjugated biotin- and DIG-VHH reagents to clinical ADA assay development using a model molecule, VHHA. The site-specific conjugation of biotin or DIG to VHHA was achieved by using an optimized reductive alkylation approach, which enabled the majority of VHHA molecules labeled with biotin or DIG at the desirable N-terminus, thereby minimizing modification of the protein after labeling and reducing the possibility of missing detection of ADAs. Head-to-head comparison of biophysical characterization data revealed that the site-specific biotin and DIG conjugates demonstrated overall superior quality to biotin- and DIG-VHHA prepared using the conventional amine coupling method, and the performance of the ADA assay developed using site-specific biotin and DIG conjugates met all acceptance criteria. The approach described here can be applied to the production of other therapeutic-protein- or antibody-based critical reagents that are used to support ligand binding assays.


Asunto(s)
Biotina , Lisina , Biotina/química , Digoxigenina/química , Anticuerpos , Aminas
5.
Front Immunol ; 14: 1237754, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37720227

RESUMEN

Therapeutic antibodies can elicit unwanted immune responses in a subset of patients, which leads to the production of anti-drug antibodies (ADA). Some of these ADAs have been reported to effect the pharmacokinetics, efficacy and/or safety of the therapeutic antibodies. The sequence diversity of antibodies are generated by VDJ recombination and mutagenesis. While the antibody generation process can create a large candidate pool for identifying high-affinity antibodies, it also could produce sequences that are foreign to the human immune system. However, it is not clear how VDJ recombination and mutagenesis impact the clinical ADA rate of therapeutic antibodies. In this study, we identified a positive correlation between the clinical ADA rate and the number of introduced mutations in the antibody sequences. We also found that the use of rare V alleles in human-origin antibody therapeutics is associated with higher risk of immunogenicity. The results suggest that antibody engineering projects should start with frameworks that contain commonly used V alleles and prioritize antibody candidates with low number of mutations to reduce the risk of immunogenicity.


Asunto(s)
Anticuerpos , Recombinación V(D)J , Humanos , Anticuerpos/genética , Anticuerpos/uso terapéutico , Alelos , Mutagénesis , Mutación
6.
Leukemia ; 36(4): 1006-1014, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35001074

RESUMEN

Despite the recent progress, multiple myeloma (MM) is still essentially incurable and there is a need for additional effective treatments with good tolerability. RO7297089 is a novel bispecific BCMA/CD16A-directed innate cell engager (ICE®) designed to induce BCMA+ MM cell lysis through high affinity binding of CD16A and retargeting of NK cell cytotoxicity and macrophage phagocytosis. Unlike conventional antibodies approved in MM, RO7297089 selectively targets CD16A with no binding of other Fcγ receptors, including CD16B on neutrophils, and irrespective of 158V/F polymorphism, and its activity is less affected by competing IgG suggesting activity in the presence of M-protein. Structural analysis revealed this is due to selective interaction with a single residue (Y140) uniquely present in CD16A opposite the Fc binding site. RO7297089 induced tumor cell killing more potently than conventional antibodies (wild-type and Fc-enhanced) and induced lysis of BCMA+ cells at very low effector-to-target ratios. Preclinical toxicology data suggested a favorable safety profile as in vitro cytokine release was minimal and no RO7297089-related mortalities or adverse events were observed in cynomolgus monkeys. These data suggest good tolerability and the potential of RO7297089 to be a novel effective treatment of MM patients.


Asunto(s)
Anticuerpos Biespecíficos , Mieloma Múltiple , Antígeno de Maduración de Linfocitos B , Humanos , Mieloma Múltiple/tratamiento farmacológico , Fagocitosis , Receptores de IgG
7.
MAbs ; 13(1): 1944017, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34225571

RESUMEN

Bispecific antibodies (bsAbs) recognize and bind two different targets or two epitopes of the same antigen, making them an attractive diagnostic and treatment modality. Compared to the production of conventional bivalent monospecific antibodies, bsAbs require greater engineering and manufacturing. Therefore, bsAbs are more likely to differ from endogenous immunoglobulins and contain new epitopes that can increase immunogenic risk. Anti-A/B is a bsAb designed using a 'knobs-into-holes' (KIH) format. Anti-A/B exhibited an unexpectedly high immunogenicity in both preclinical and clinical studies, resulting in early termination of clinical development. Here, we used an integrated approach that combined in silico analysis, in vitro assays, and an in vivo study in non-human primates to characterize anti-A/B immunogenicity. Our findings indicated that the immunogenicity is associated with epitopes in the anti-B arm and not with mutations engineered through the KIH process. Our results showed the value of this integrated approach for performing immunogenicity risk assessment during clinical candidate selection to effectively mitigate risks during bsAb development.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Técnicas Inmunológicas/métodos , Animales , Macaca fascicularis
8.
Bioanalysis ; 13(13): 1071-1081, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34124935

RESUMEN

Development of antidrug antibodies (ADAs) is an undesirable potential outcome of administration of biotherapeutics and involves the innate and adaptive immune systems. ADAs can have detrimental clinical consequences: they can reduce biotherapeutic efficacy or produce adverse events. Because animal models are considered poor predictors of immunogenicity in humans, in vitro assays with human innate and adaptive immune cells are commonly used alternatives that can reveal cell-mediated unwanted immune responses. Multiple methods have been developed to assess the immune cell response following exposure to biotherapeutics and estimate the potential immunogenicity of biotherapeutics. This review highlights the role of innate and adaptive immune cells as the drivers of immunogenicity and summarizes the use of these cells in assays to predict clinical ADA.


Asunto(s)
Inmunidad Adaptativa/inmunología , Productos Biológicos/inmunología , Inmunidad Innata/inmunología , Anticuerpos Monoclonales/inmunología , Productos Biológicos/análisis , Linfocitos T CD4-Positivos/metabolismo , Antígenos HLA-D/inmunología , Humanos , Receptores de Antígenos de Linfocitos B/análisis , Receptores de Antígenos de Linfocitos B/inmunología , Receptores de Antígenos de Linfocitos T/análisis , Receptores de Antígenos de Linfocitos T/inmunología
9.
MAbs ; 13(1): 1898831, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33729092

RESUMEN

Biotherapeutics, which are biologic medications that are natural or bioengineered products of living cells, have revolutionized the treatment of many diseases. However, unwanted immune responses still present a major challenge to their widespread adoption. Many patients treated with biotherapeutics develop antigen-specific anti-drug antibodies (ADAs) that may reduce the efficacy of the therapy or cross-react with the endogenous counterpart of a protein therapeutic, or both. Here, we describe an in vitro method for assessing the immunogenic risk of a biotherapeutic. We found a correlation between clinical immunogenicity and the frequency with which a biotherapeutic stimulated an increase in CD134, CD137, or both cell surface markers on CD4+ T cells. Using high-throughput flow cytometry, we examined the effects of 14 biotherapeutics with diverse rates of clinical immunogenicity on peripheral blood mononuclear cells from 120 donors with diverse human leukocyte antigen class II-encoding alleles. Biotherapeutics with high rates of ADA development in the clinic had higher proportions of CD4+ T cells positive for CD134 or CD137 than biotherapeutics with low clinical immunogenicity. This method provides a rapid and simple preclinical test of the immunogenic potential of a new candidate biotherapeutic or biosimilar. Implementation of this approach during biotherapeutic research and development enables rapid elimination of candidates that are likely to cause ADA-related adverse events and detrimental consequences.


Asunto(s)
Anticuerpos Monoclonales/toxicidad , Productos Biológicos/toxicidad , Activación de Linfocitos/efectos de los fármacos , Receptores OX40/metabolismo , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Pruebas de Toxicidad , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Anticuerpos Monoclonales/inmunología , Formación de Anticuerpos , Productos Biológicos/inmunología , Biomarcadores/metabolismo , Células Cultivadas , Reacciones Cruzadas , Citometría de Flujo , Ensayos Analíticos de Alto Rendimiento , Humanos , Medición de Riesgo , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Regulación hacia Arriba
10.
J Immunol ; 199(8): 2745-2757, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28904129

RESUMEN

The control of lymphoid homeostasis is the result of a very fine balance between lymphocyte production, proliferation, and apoptosis. In this study, we focused on the role of T cells in the maintenance/survival of the mature naive peripheral B cell population. We show that naive B and T cells interact via the signaling lymphocyte activation molecule (SLAM) family receptor, SLAMF6. This interaction induces cell type-specific signals in both cell types, mediated by the SLAM-associated protein (SAP) family of adaptors. This signaling results in an upregulation of the expression of the cytokine migration inhibitory factor in the T cells and augmented expression of its receptor CD74 on the B cell counterparts, consequently enhancing B cell survival. Furthermore, in X-linked lymphoproliferative disease patients, SAP deficiency reduces CD74 expression, resulting in the perturbation of B cell maintenance from the naive stage. Thus, naive T cells regulate B cell survival in a SLAMF6- and SAP-dependent manner.


Asunto(s)
Subgrupos de Linfocitos B/fisiología , Linfocitos B/fisiología , Células Sanguíneas/fisiología , Trastornos Linfoproliferativos/inmunología , Proteína Asociada a la Molécula de Señalización de la Activación Linfocitaria/metabolismo , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo , Linfocitos T/fisiología , Animales , Anticuerpos Bloqueadores/administración & dosificación , Comunicación Celular , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Homeostasis , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Interferente Pequeño/genética , Proteína Asociada a la Molécula de Señalización de la Activación Linfocitaria/genética , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/genética
11.
J Immunol ; 198(12): 4659-4671, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28507030

RESUMEN

Chemokines and chemokine receptors establish a complex network modulating immune cell migration and localization. These molecules were also suggested to mediate the differentiation of leukocytes; however, their intrinsic, direct regulation of lymphocyte fate remained unclear. CCR2 is the main chemokine receptor inducing macrophage and monocyte recruitment to sites of inflammation, and it is also expressed on T cells. To assess whether CCR2 directly regulates T cell responses, we followed the fates of CCR2-/- T cells in T cell-specific inflammatory models. Our in vitro and in vivo results show that CCR2 intrinsically mediates the expression of inflammatory T cell cytokines, and its absence on T cells results in attenuated colitis progression. Moreover, CCR2 deficiency in T cells promoted a program inducing the accumulation of Foxp3+ regulatory T cells, while decreasing the levels of Th17 cells in vivo, indicating that CCR2 regulates the immune response by modulating the effector/regulatory T ratio.


Asunto(s)
Inmunidad Celular , Receptores CCR2/metabolismo , Linfocitos T Reguladores/inmunología , Animales , Movimiento Celular , Colitis/inmunología , Citocinas/genética , Citocinas/inmunología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Macrófagos/inmunología , Ratones , Receptores CCR2/deficiencia , Receptores CCR2/genética , Receptores CCR2/inmunología , Receptores CCR5/inmunología , Receptores CCR5/metabolismo , Células Th17/inmunología , Células Th17/fisiología
12.
Eur J Immunol ; 47(2): 225-235, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28054344

RESUMEN

T cells are highly influenced by nutrient uptake from their environment, and changes in overall nutritional status, such as malnutrition or obesity, can result in altered T-cell metabolism and behavior. In states of severe malnutrition or starvation, T-cell survival, proliferation, and inflammatory cytokine production are all decreased, as is T-cell glucose uptake and metabolism. The altered T-cell function and metabolism seen in malnutrition is associated with altered adipokine levels, most particularly decreased leptin. Circulating leptin levels are low in malnutrition, and leptin has been shown to be a key link between nutrition and immunity. The current view is that leptin signaling is required to upregulate activated T-cell glucose metabolism and thereby fuel T-cell activation. In the setting of obesity, T cells have been found to have a key role in promoting the recruitment of inflammatory macrophages to adipose depots along with the production of inflammatory cytokines that promote the development of insulin resistance leading to diabetes. Deletion of T cells, key T-cell transcription factors, or pro-inflammatory T-cell cytokines prevents insulin resistance in obesity and underscores the importance of T cells in obesity-associated inflammation and metabolic disease. Altogether, T cells have a critical role in nutritional immunometabolism.


Asunto(s)
Alimentos , Inflamación/inmunología , Leptina/metabolismo , Desnutrición/inmunología , Estado Nutricional/inmunología , Obesidad/inmunología , Linfocitos T/metabolismo , Animales , Citocinas/metabolismo , Glucosa/metabolismo , Humanos , Resistencia a la Insulina , Activación de Linfocitos , Transducción de Señal/inmunología
13.
J Basic Clin Physiol Pharmacol ; 28(2): 167-170, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-27831921

RESUMEN

BACKGROUND: Smoking has a thermogenic effect and is associated with low physical performance. Nevertheless, a direct, quantitative effect of acute smoking on exercise heat tolerance has not been reported. METHODS: Sixteen healthy young male volunteers, eight cigarette smokers, and eight non-smokers participated in the study. All subjects performed a maximal oxygen consumption test (VO2max) and a standardized heat tolerance test (HTT) after at least 12 h without smoking under the following conditions: no nicotine exposure, 10 min after nicotine exposure (2 mg nicotine lozenge), and 10 min after smoking two cigarettes (0.8 mg nicotine in each cigarette, smokers only). RESULTS: There was no significant effect of nicotine exposure on physiological performance and heat tolerance in the non-smokers group. In the smokers group, cigarette smoking, but not nicotine ingestion, resulted with higher heart rate (by 9±9 bpm) at the end of the HTT (p<0.05). Moreover, both smoking and nicotine ingestion increased smokers' rectal temperature at the end of the HTT (by 0.24±0.16°C and 0.21±0.26°C, respectively, p<0.05) and were associated with higher sweat rate during the HTT (by 0.08±0.07 g/h and 0.06±0.08 g/h, respectively, p<0.05). Heart rate variability (HRV) analysis also revealed a higher LF/HF (low frequency/high frequency) ratio after exposure to nicotine and smoking in the smokers group compared with no exposure (2.13±2.57 and 2.48±2.76, respectively, p<0.05), indicating a higher sympathetic tone. CONCLUSIONS: According to this preliminary study, cigarette smoking and nicotine ingestion increase the physiological strain during a HTT in smokers. Acute smoking may, therefore, increase heat intolerance and the risk to heat injuries.


Asunto(s)
Ejercicio Físico/fisiología , Nicotina/efectos adversos , Fumar/efectos adversos , Termotolerancia/efectos de los fármacos , Termotolerancia/fisiología , Adulto , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Nicotina/administración & dosificación , Distribución Aleatoria , Adulto Joven
14.
Nat Immunol ; 17(12): 1459-1466, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27695003

RESUMEN

CD4+ effector T cells (Teff cells) and regulatory T cells (Treg cells) undergo metabolic reprogramming to support proliferation and immunological function. Although signaling via the lipid kinase PI(3)K (phosphatidylinositol-3-OH kinase), the serine-threonine kinase Akt and the metabolic checkpoint kinase complex mTORC1 induces both expression of the glucose transporter Glut1 and aerobic glycolysis for Teff cell proliferation and inflammatory function, the mechanisms that regulate Treg cell metabolism and function remain unclear. We found that Toll-like receptor (TLR) signals that promote Treg cell proliferation increased PI(3)K-Akt-mTORC1 signaling, glycolysis and expression of Glut1. However, TLR-induced mTORC1 signaling also impaired Treg cell suppressive capacity. Conversely, the transcription factor Foxp3 opposed PI(3)K-Akt-mTORC1 signaling to diminish glycolysis and anabolic metabolism while increasing oxidative and catabolic metabolism. Notably, Glut1 expression was sufficient to increase the number of Treg cells, but it reduced their suppressive capacity and Foxp3 expression. Thus, inflammatory signals and Foxp3 balance mTORC1 signaling and glucose metabolism to control the proliferation and suppressive function of Treg cells.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Reguladores/inmunología , Receptores Toll-Like/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Transportador de Glucosa de Tipo 1/genética , Glucólisis , Tolerancia Inmunológica , Diana Mecanicista del Complejo 1 de la Rapamicina , Metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Complejos Multiproteicos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
15.
Immunity ; 45(3): 540-554, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27637146

RESUMEN

Follicular helper T (Tfh) cells are crucial for germinal center (GC) formation and humoral adaptive immunity. Mechanisms underlying Tfh cell differentiation in peripheral and mucosal lymphoid organs are incompletely understood. We report here that mTOR kinase complexes 1 and 2 (mTORC1 and mTORC2) are essential for Tfh cell differentiation and GC reaction under steady state and after antigen immunization and viral infection. Loss of mTORC1 and mTORC2 in T cells exerted distinct effects on Tfh cell signature gene expression, whereas increased mTOR activity promoted Tfh responses. Deficiency of mTORC2 impaired CD4(+) T cell accumulation and immunoglobulin A production and aberrantly induced the transcription factor Foxo1. Mechanistically, the costimulatory molecule ICOS activated mTORC1 and mTORC2 to drive glycolysis and lipogenesis, and glucose transporter 1-mediated glucose metabolism promoted Tfh cell responses. Altogether, mTOR acts as a central node in Tfh cells by linking immune signals to anabolic metabolism and transcriptional activity.


Asunto(s)
Diferenciación Celular/inmunología , Glucosa/metabolismo , Complejos Multiproteicos/metabolismo , Transducción de Señal/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Células Cultivadas , Centro Germinal/inmunología , Centro Germinal/metabolismo , Inmunidad Humoral/inmunología , Activación de Linfocitos/inmunología , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Complejos Multiproteicos/inmunología , Serina-Treonina Quinasas TOR/inmunología
16.
J Immunol ; 197(6): 2532-40, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27511728

RESUMEN

Leukemia can promote T cell dysfunction and exhaustion that contributes to increased susceptibility to infection and mortality. The treatment-independent mechanisms that mediate leukemia-associated T cell impairments are poorly understood, but metabolism tightly regulates T cell function and may contribute. In this study, we show that B cell leukemia causes T cells to become activated and hyporesponsive with increased PD-1 and TIM3 expression similar to exhausted T cells and that T cells from leukemic hosts become metabolically impaired. Metabolic defects included reduced Akt/mammalian target of rapamycin complex 1 (mTORC1) signaling, decreased expression of the glucose transporter Glut1 and hexokinase 2, and reduced glucose uptake. These metabolic changes correlated with increased regulatory T cell frequency and expression of PD-L1 and Gal-9 on both leukemic and stromal cells in the leukemic microenvironment. PD-1, however, was not sufficient to drive T cell impairment, as in vivo and in vitro anti-PD-1 blockade on its own only modestly improved T cell function. Importantly, impaired T cell metabolism directly contributed to dysfunction, as a rescue of T cell metabolism by genetically increasing Akt/mTORC1 signaling or expression of Glut1 partially restored T cell function. Enforced Akt/mTORC1 signaling also decreased expression of inhibitory receptors TIM3 and PD-1, as well as partially improved antileukemia immunity. Similar findings were obtained in T cells from patients with acute or chronic B cell leukemia, which were also metabolically exhausted and had defective Akt/mTORC1 signaling, reduced expression of Glut1 and hexokinase 2, and decreased glucose metabolism. Thus, B cell leukemia-induced inhibition of T cell Akt/mTORC1 signaling and glucose metabolism drives T cell dysfunction.


Asunto(s)
Transportador de Glucosa de Tipo 1/antagonistas & inhibidores , Glucosa/metabolismo , Leucemia Linfocítica Crónica de Células B/inmunología , Complejos Multiproteicos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Linfocitos T/inmunología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Metabolismo de los Hidratos de Carbono , Línea Celular Tumoral , Glucosa/antagonistas & inhibidores , Transportador de Glucosa de Tipo 1/genética , Glucólisis , Humanos , Activación de Linfocitos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Bazo/citología , Bazo/inmunología
17.
Cell Metab ; 23(4): 649-62, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27076078

RESUMEN

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy associated with Notch pathway mutations. While both normal activated and leukemic T cells can utilize aerobic glycolysis to support proliferation, it is unclear to what extent these cell populations are metabolically similar and if differences reveal T-ALL vulnerabilities. Here we show that aerobic glycolysis is surprisingly less active in T-ALL cells than proliferating normal T cells and that T-ALL cells are metabolically distinct. Oncogenic Notch promoted glycolysis but also induced metabolic stress that activated 5' AMP-activated kinase (AMPK). Unlike stimulated T cells, AMPK actively restrained aerobic glycolysis in T-ALL cells through inhibition of mTORC1 while promoting oxidative metabolism and mitochondrial Complex I activity. Importantly, AMPK deficiency or inhibition of Complex I led to T-ALL cell death and reduced disease burden. Thus, AMPK simultaneously inhibits anabolic growth signaling and is essential to promote mitochondrial pathways that mitigate metabolic stress and apoptosis in T-ALL.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Glucólisis , Mitocondrias/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones Endogámicos C57BL , Mitocondrias/patología , Complejos Multiproteicos/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Receptores Notch/metabolismo , Transducción de Señal , Estrés Fisiológico , Linfocitos T/metabolismo , Linfocitos T/patología , Serina-Treonina Quinasas TOR/metabolismo
18.
Inflamm Bowel Dis ; 22(2): 257-67, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26529559

RESUMEN

The continuous recirculation of mature lymphocytes and their entry into the peripheral lymph nodes are crucial for the development of an immune response to foreign antigens. Occasionally, the entry and the subsequent response of T lymphocytes in these sites lead to severe inflammation and pathological conditions. Here, we characterized the tetraspanin molecule, CD151, as a regulator of T cell motility in health and in models of inflammatory bowel disease. CD151 formed a cell surface complex with VLA-4 and LFA-1 integrins, and its activation led to enhanced migration of T cells. Picomolar levels of CCL2 that were previously shown to inhibit T-cell migration to lymph nodes suppressed CD151 expression and dissociated CD151-integrin complexes in T lymphocytes, resulting in attenuated migration toward T-cell attractant chemokines. To directly inhibit CD151 function, a truncated CD151 peptide fragment mimicking of the CD151 extracellular loop was designed. CD151 extracellular loop inhibited T-cell migration in vitro and in vivo and attenuated the development of dextrane sulfate sodium-induced colitis. Thus, CD151 is a key orchestrator of T cell motility; interference with its proper function results in attenuated progression of inflammatory bowel disease.


Asunto(s)
Movimiento Celular/inmunología , Colitis Ulcerosa/inmunología , Enfermedad de Crohn/inmunología , Inflamación/inmunología , Linfocitos T/inmunología , Tetraspanina 24/fisiología , Animales , Estudios de Casos y Controles , Movimiento Celular/fisiología , Estudios de Seguimiento , Proteínas de Homeodominio/fisiología , Humanos , Antígenos Comunes de Leucocito/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Pronóstico , Receptores CCR2/fisiología
19.
Br J Pharmacol ; 171(4): 888-95, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24111754

RESUMEN

UNLABELLED: In healthy individuals, the pool of peripheral lymphocytes is constant in size. The control of lymphoid homeostasis is the result of a very fine balance between lymphocyte production, survival and proliferation. Survival factors have been shown to play a critical role in maintaining the correct size of lymphocyte populations. Midkine, a heparin-binding cytokine was recently shown to be involved in cell proliferation, differentiation and apoptosis in various cell types including normal and malignant B cells. This review focuses on the role of midkine in the regulation of peripheral B cell survival in health and disease. LINKED ARTICLES: This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4.


Asunto(s)
Linfocitos B/inmunología , Citocinas/inmunología , Animales , Linfocitos B/citología , Diferenciación Celular , Supervivencia Celular , Citocinas/metabolismo , Humanos , Midkina , Neoplasias/inmunología , Neoplasias/metabolismo
20.
Clin Radiol ; 68(12): 1212-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23937823

RESUMEN

AIM: To report the computed tomography (CT) findings of acute and complicated appendicitis in adults with incidental midgut malrotation. MATERIALS AND METHODS: The medical records and CT studies of eight patients with appendicitis and incidental midgut malrotation who presented to two medical centres between 1998 and 2009 were reviewed. RESULTS: All patients presented with 1-5 days of acute abdominal pain, which was diffuse in two, left-sided in two, lower abdominal in two, and in the right lower quadrant in two patients. The inflamed appendix was right-sided in three, left-sided in three, and in the midline in two patients. Three cases were complicated by a peri-appendicular abscess, and one patient also had a small bowel obstruction. All patients had a complete non-rotation with right-sided duodenum and jejunum, and left-sided colon. All eight patients had an abnormal superior mesenteric artery-superior mesenteric vein (SMA/SMV) relationship and a dysplastic uncinate process of the pancreas. Urgent surgery was performed in six patients and the remaining two were treated conservatively. CONCLUSION: Altered anatomy in malrotation affects the typical clinical and CT findings of acute appendicitis, therefore delaying diagnosis. When CT shows focal inflammation anywhere within the abdomen, along with an abnormal SMA/SMV relationship, the position of the caecum should be ascertained and acute appendicitis ruled out.


Asunto(s)
Apendicitis/diagnóstico por imagen , Anomalías del Sistema Digestivo/diagnóstico por imagen , Vólvulo Intestinal/diagnóstico por imagen , Dolor Abdominal/diagnóstico por imagen , Dolor Abdominal/etiología , Adulto , Anciano , Anciano de 80 o más Años , Apendicitis/complicaciones , Anomalías del Sistema Digestivo/complicaciones , Femenino , Humanos , Hallazgos Incidentales , Vólvulo Intestinal/complicaciones , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA