Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plast Reconstr Surg Glob Open ; 7(1): e2081, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30859039

RESUMEN

BACKGROUND: Craniofacial microsomia (CFM) is a congenital condition associated with malformations of the bone and soft tissue of the face and the facial nerves, all of which have the potential to impair facial expressiveness. We investigated whether CFM-related variation in expressiveness is evident as early as infancy. METHODS: Participants were 113 ethnically diverse 13-month-old infants (n = 63 cases with CFM and n = 50 unaffected matched controls). They were observed in 2 emotion induction tasks designed to elicit positive and negative effects. Facial and head movement was automatically measured using a computer vision-based approach. Expressiveness was quantified as the displacement, velocity, and acceleration of 49 facial landmarks (eg, lip corners) and head pitch and yaw. RESULTS: For both cases and controls, all measures of expressiveness strongly differed between tasks. Case-control differences were limited to infants with microtia plus mandibular hypoplasia and other associated CFM features, which were the most common phenotypes and were characterized by decreased expressiveness relative to control infants. CONCLUSIONS: Infants with microtia plus mandibular hypoplasia and those with other associated CFM phenotypes were less facially expressive than same-aged peers. Both phenotypes were associated with more severe involvement than microtia alone, suggesting that infants with more severe CFM begin to diverge in expressiveness from controls by age 13 months. Further research is needed to both replicate the current findings and elucidate their developmental implications.

2.
Artículo en Inglés | MEDLINE | ID: mdl-32363090

RESUMEN

The Duchenne smile hypothesis is that smiles that include eye constriction (AU6) are the product of genuine positive emotion, whereas smiles that do not are either falsified or related to negative emotion. This hypothesis has become very influential and is often used in scientific and applied settings to justify the inference that a smile is either true or false. However, empirical support for this hypothesis has been equivocal and some researchers have proposed that, rather than being a reliable indicator of positive emotion, AU6 may just be an artifact produced by intense smiles. Initial support for this proposal has been found when comparing smiles related to genuine and feigned positive emotion; however, it has not yet been examined when comparing smiles related to genuine positive and negative emotion. The current study addressed this gap in the literature by examining spontaneous smiles from 136 participants during the elicitation of amusement, embarrassment, fear, and pain (from the BP4D+ dataset). Bayesian multilevel regression models were used to quantify the associations between AU6 and self-reported amusement while controlling for smile intensity. Models were estimated to infer amusement from AU6 and to explain the intensity of AU6 using amusement. In both cases, controlling for smile intensity substantially reduced the hypothesized association, whereas the effect of smile intensity itself was quite large and reliable. These results provide further evidence that the Duchenne smile is likely an artifact of smile intensity rather than a reliable and unique indicator of genuine positive emotion.

3.
Artículo en Inglés | MEDLINE | ID: mdl-30511050

RESUMEN

Automated measurement of affective behavior in psychopathology has been limited primarily to screening and diagnosis. While useful, clinicians more often are concerned with whether patients are improving in response to treatment. Are symptoms abating, is affect becoming more positive, are unanticipated side effects emerging? When treatment includes neural implants, need for objective, repeatable biometrics tied to neurophysiology becomes especially pressing. We used automated face analysis to assess treatment response to deep brain stimulation (DBS) in two patients with intractable obsessive-compulsive disorder (OCD). One was assessed intraoperatively following implantation and activation of the DBS device. The other was assessed three months post-implantation. Both were assessed during DBS on and o conditions. Positive and negative valence were quantified using a CNN trained on normative data of 160 non-OCD participants. Thus, a secondary goal was domain transfer of the classifiers. In both contexts, DBS-on resulted in marked positive affect. In response to DBS-off, affect flattened in both contexts and alternated with increased negative affect in the outpatient setting. Mean AUC for domain transfer was 0.87. These findings suggest that parametric variation of DBS is strongly related to affective behavior and may introduce vulnerability for negative affect in the event that DBS is discontinued.

4.
Artículo en Inglés | MEDLINE | ID: mdl-25574450

RESUMEN

Recognizing facial action units (AUs) is important for situation analysis and automated video annotation. Previous work has emphasized face tracking and registration and the choice of features classifiers. Relatively neglected is the effect of imbalanced data for action unit detection. While the machine learning community has become aware of the problem of skewed data for training classifiers, little attention has been paid to how skew may bias performance metrics. To address this question, we conducted experiments using both simulated classifiers and three major databases that differ in size, type of FACS coding, and degree of skew. We evaluated influence of skew on both threshold metrics (Accuracy, F-score, Cohen's kappa, and Krippendorf's alpha) and rank metrics (area under the receiver operating characteristic (ROC) curve and precision-recall curve). With exception of area under the ROC curve, all were attenuated by skewed distributions, in many cases, dramatically so. While ROC was unaffected by skew, precision-recall curves suggest that ROC may mask poor performance. Our findings suggest that skew is a critical factor in evaluating performance metrics. To avoid or minimize skew-biased estimates of performance, we recommend reporting skew-normalized scores along with the obtained ones.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA