Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 42
1.
Sci Rep ; 14(1): 10365, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710778

Cardiac fibroblasts (CFs) are essential for preserving myocardial integrity and function. They can detect variations in cardiac tissue stiffness using various cellular mechanosensors, including the Ca2+ permeable mechanosensitive channel Piezo1. Nevertheless, how CFs adapt the mechanosensitive response to stiffness changes remains unclear. In this work we adopted a multimodal approach, combining the local mechanical stimulation (from 10 pN to 350 nN) with variations of culture substrate stiffness. We found that primary rat CFs cultured on stiff (GPa) substrates showed a broad Piezo1 distribution in the cell with particular accumulation at the mitochondria membrane. CFs displayed a force-dependent behavior in both calcium uptake and channel activation probability, showing a threshold at 300 nN, which involves both cytosolic and mitochondrial Ca2+ mobilization. This trend decreases as the myofibroblast phenotype within the cell population increases, following a possible Piezo1 accumulation at focal adhesion sites. In contrast, the inhibition of fibroblasts to myofibroblasts transition with soft substrates (kPa) considerably reduces both mechanically- and chemically-induced Piezo1 activation and expression. Our findings shed light on how Piezo1 function and expression are regulated by the substrate stiffness and highlight its involvement in the environment-mediated modulation of CFs mechanosensitivity.


Fibroblasts , Ion Channels , Mechanotransduction, Cellular , Membrane Proteins , Animals , Ion Channels/metabolism , Rats , Fibroblasts/metabolism , Fibroblasts/cytology , Cells, Cultured , Calcium/metabolism , Myofibroblasts/metabolism , Myofibroblasts/physiology , Myocardium/metabolism , Myocardium/cytology , Cellular Microenvironment
2.
Biomolecules ; 14(1)2024 Jan 05.
Article En | MEDLINE | ID: mdl-38254670

(1) Background: Central nervous system (CNS) development is characterized by dynamic changes in cell proliferation and differentiation. Key regulators of these transitions are the transcription factors such as SOX2 and SOX9. SOX2 is involved in the maintenance of progenitor cell state and neural stem cell multipotency, while SOX9, expressed in neurogenic niches, plays an important role in neuron/glia switch with predominant expression in astrocytes in the adult brain. (2) Methods: To validate SOX2 and SOX9 expression patterns in developing opossum (Monodelphis domestica) cortex, we used immunohistochemistry (IHC) and the isotropic fractionator method on fixed cortical tissue from comparable postnatal ages, as well as dissociated primary neuronal cultures. (3) Results: Neurons positive for both neuronal (TUJ1 or NeuN) and stem cell (SOX2) markers were identified, and their presence was confirmed with all methods and postnatal age groups (P4-6, P6-18, and P30) analyzed. SOX9 showed exclusive staining in non-neuronal cells, and it was coexpressed with SOX2. (4) Conclusions: The persistence of SOX2 expression in developing cortical neurons of M. domestica during the first postnatal month implies the functional role of SOX2 during neuronal differentiation and maturation, which was not previously reported in opossums.


Monodelphis , Neural Stem Cells , SOX Transcription Factors , Animals , Monodelphis/genetics , Neuroglia , Neurons , SOX Transcription Factors/genetics , Cerebral Cortex/metabolism
3.
Biosensors (Basel) ; 13(8)2023 Aug 04.
Article En | MEDLINE | ID: mdl-37622874

Urinary tract infections are among the most frequent infectious diseases and require screening a great amount of urine samples from patients. However, a high percentage of samples result as negative after urine culture plate tests (CPTs), demanding a simple and fast preliminary technique to screen out the negative samples. We propose a digital holographic microscopy (DHM) method to inspect fresh urine samples flowing in a glass capillary for 3 min, recording holograms at 2 frames per second. After digital reconstruction, bacteria, white and red blood cells, epithelial cells and crystals were identified and counted, and the samples were classified as negative or positive according to clinical cutoff values. Taking the CPT as reference, we processed 180 urine samples and compared the results with those of urine flow cytometry (UFC). Using standard evaluation metrics for our screening test, we found a similar performance for DHM and UFC, indicating DHM as a suitable and fast screening technique retaining several advantages. As a benefit of DHM, the technique is label-free and does not require sample preparation. Moreover, the phase and amplitude images of the cells and other particles present in urine are digitally recorded and can serve for further investigation afterwards.


Body Fluids , Microscopy , Humans , Epithelial Cells , Erythrocytes , Flow Cytometry
4.
Front Physiol ; 13: 979298, 2022.
Article En | MEDLINE | ID: mdl-36051915

Modern medicine increases the demand for safe blood products. Ex vivo cultured red blood cells (cRBC) are eagerly awaited as a standardized, safe source of RBC. Established culture models still lack the terminal cytoskeletal remodeling from reticulocyte to erythrocyte with changes in the biomechanical properties and interacts with membrane stiffness, viscosity of the cytoplasm and the cytoskeletal network. Comprehensive data on the biomechanical properties of cRBC are needed to take the last step towards translation into clinical use in transfusion medicine. Aim of the study was the comparative analysis of topographical and biomechanical properties of cRBC, generated from human CD34+ adult hematopoietic stem/progenitor cells, with native reticulocytes (nRET) and erythrocytes (nRBC) using cell biological and biomechanical technologies. To gain the desired all-encompassing information, a single method was unsatisfactory and only the combination of different methods could lead to the goal. Topographical information was matched with biomechanical data from optical tweezers (OT), atomic force microscopy (AFM) and digital holographic microscopy (DHM). Underlying structures were investigated in detail. Imaging, deformability and recovery time showed a high similarity between cRBC and nRBC. Young's modulus and plasticity index also confirmed this similarity. No significant differences in membrane and cytoskeletal proteins were found, while lipid deficiency resulted in spherical, vesiculated cells with impaired biomechanical functionality. The combination of techniques has proven successful and experiments underscore a close relationship between lipid content, shape and biomechanical functionality of RBC.

5.
Int J Mol Sci ; 23(15)2022 Jul 22.
Article En | MEDLINE | ID: mdl-35897650

Fibrotic tissues share many common features with neoplasms where there is an increased stiffness of the extracellular matrix (ECM). In this review, we present recent discoveries related to the role of the mechanosensitive ion channel Piezo1 in several diseases, especially in regulating tumor progression, and how this can be compared with cardiac mechanobiology. Based on recent findings, Piezo1 could be upregulated in cardiac fibroblasts as a consequence of the mechanical stress and pro-inflammatory stimuli that occurs after myocardial injury, and its increased activity could be responsible for a positive feedback loop that leads to fibrosis progression. The increased Piezo1-mediated calcium flow may play an important role in cytoskeleton reorganization since it induces actin stress fibers formation, a well-known characteristic of fibroblast transdifferentiation into the activated myofibroblast. Moreover, Piezo1 activity stimulates ECM and cytokines production, which in turn promotes the phenoconversion of adjacent fibroblasts into new myofibroblasts, enhancing the invasive character. Thus, by assuming the Piezo1 involvement in the activation of intrinsic fibroblasts, recruitment of new myofibroblasts, and uncontrolled excessive ECM production, a new approach to blocking the fibrotic progression can be predicted. Therefore, targeted therapies against Piezo1 could also be beneficial for cardiac fibrosis.


Myocardium , Myofibroblasts , Animals , Fibroblasts/pathology , Fibrosis , Heart/physiology , Humans , Ion Channels , Mice , Myocardium/pathology , Myofibroblasts/pathology
6.
Int J Mol Sci ; 23(8)2022 Apr 07.
Article En | MEDLINE | ID: mdl-35456926

The connection between cytoskeleton alterations and diseases is well known and has stimulated research on cell mechanics, aiming to develop reliable biomarkers. In this study, we present results on rheological, adhesion, and morphological properties of primary rat cardiac fibroblasts, the cytoskeleton of which was altered by treatment with cytochalasin D (Cyt-D) and nocodazole (Noc), respectively. We used two complementary techniques: quartz crystal microbalance (QCM) and digital holographic microscopy (DHM). Qualitative data on cell viscoelasticity and adhesion changes at the cell-substrate near-interface layer were obtained with QCM, while DHM allowed the measurement of morphological changes due to the cytoskeletal alterations. A rapid effect of Cyt-D was observed, leading to a reduction in cell viscosity, loss of adhesion, and cell rounding, often followed by detachment from the surface. Noc treatment, instead, induced slower but continuous variations in the rheological behavior for four hours of treatment. The higher vibrational energy dissipation reflected the cell's ability to maintain a stable attachment to the substrate, while a cytoskeletal rearrangement occurs. In fact, along with the complete disaggregation of microtubules at prolonged drug exposure, a compensatory effect of actin polymerization emerged, with increased stress fiber formation.


Microscopy , Quartz Crystal Microbalance Techniques , Animals , Cytochalasin D/pharmacology , Cytoskeleton/metabolism , Microtubules , Nocodazole/pharmacology , Quartz Crystal Microbalance Techniques/methods , Rats , Viscosity
7.
iScience ; 25(2): 103807, 2022 Feb 18.
Article En | MEDLINE | ID: mdl-35198872

There is growing evidence suggesting that mechanical properties of CNS neurons may play an important regulatory role in cellular processes. Here, we employ an oscillatory optical tweezers (OOT) to exert a local indentation with forces in the range of 5-50 pN. We found that single local indentation above a threshold of 13 ± 1 pN evokes a transient intracellular calcium change, whereas repeated mechanical stimulations induce a more sustained and variable calcium response. Importantly, neurons were able to differentiate the magnitude of mechanical stimuli. Chemical perturbation and whole-cell patch clamp recordings suggest that mechanically evoked response requires the influx of extracellular calcium through transmembrane ion channels. Moreover, we observed a mechanically evoked activation of the CAMKII and small G protein RhoA. These results all together suggest that mechanical signaling among developed neurons fully operates in neuronal networks under physiological conditions.

8.
Int J Mol Sci ; 22(17)2021 Aug 25.
Article En | MEDLINE | ID: mdl-34502098

Clinical effects induced by arrhythmogenic cardiomyopathy (ACM) originate from a large spectrum of genetic variations, including the missense mutation of the lamin A/C gene (LMNA), LMNA D192G. The aim of our study was to investigate the biophysical and biomechanical impact of the LMNA D192G mutation on neonatal rat ventricular fibroblasts (NRVF). The main findings in mutated NRVFs were: (i) cytoskeleton disorganization (actin and intermediate filaments); (ii) decreased elasticity of NRVFs; (iii) altered cell-cell adhesion properties, that highlighted a strong effect on cellular communication, in particular on tunneling nanotubes (TNTs). In mutant-expressing fibroblasts, these nanotubes were weakened with altered mechanical properties as shown by atomic force microscopy (AFM) and optical tweezers. These outcomes complement prior investigations on LMNA mutant cardiomyocytes and suggest that the LMNA D192G mutation impacts the biomechanical properties of both cardiomyocytes and cardiac fibroblasts. These observations could explain how this mutation influences cardiac biomechanical pathology and the severity of ACM in LMNA-cardiomyopathy.


Cell Adhesion , Lamin Type A/metabolism , Myofibroblasts/metabolism , Actin Cytoskeleton/metabolism , Animals , Cells, Cultured , Lamin Type A/genetics , Microscopy, Atomic Force , Mutation, Missense , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Myofibroblasts/physiology , Nanotubes/chemistry , Optical Tweezers , Rats , Rats, Sprague-Dawley
9.
J Extracell Vesicles ; 10(9): e12114, 2021 07.
Article En | MEDLINE | ID: mdl-34276899

Astrocytes-derived extracellular vesicles (EVs) are key players in glia-neuron communication. However, whether EVs interact with neurons at preferential sites and how EVs reach these sites on neurons remains elusive. Using optical manipulation to study single EV-neuron dynamics, we here show that large EVs scan the neuron surface and use neuronal processes as highways to move extracellularly. Large EV motion on neurites is driven by the binding of EV to a surface receptor that slides on neuronal membrane, thanks to actin cytoskeleton rearrangements. The use of prion protein (PrP)-coated synthetic beads and PrP knock out EVs/neurons points at vesicular PrP and its receptor(s) on neurons in the control of EV motion. Surprisingly, a fraction of large EVs contains actin filaments and has an independent capacity to move in an actin-mediated way, through intermittent contacts with the plasma membrane. Our results unveil, for the first time, a dual mechanism exploited by astrocytic large EVs to passively/actively reach target sites on neurons moving on the neuron surface.


Astrocytes/cytology , Extracellular Vesicles/physiology , Neurites/physiology , Prion Proteins/metabolism , Actins/metabolism , Adenosine Triphosphate/metabolism , Animals , Cell Movement , Cells, Cultured , Cytoskeleton/physiology , Energy Metabolism , Female , Male , Rats , Rats, Sprague-Dawley , Surface Properties
10.
Cells ; 10(3)2021 03 04.
Article En | MEDLINE | ID: mdl-33806520

Ex vivo-generated red blood cells are a promising resource for future safe blood products, manufactured independently of voluntary blood donations. The physiological process of terminal maturation from spheroid reticulocytes to biconcave erythrocytes has not been accomplished yet. A better biomechanical characterization of cultured red blood cells (cRBCs) will be of utmost interest for manufacturer approval and therapeutic application. Here, we introduce a novel optical tweezer (OT) approach to measure the deformation and elasticity of single cells trapped away from the coverslip. To investigate membrane properties dependent on membrane lipid content, two culture conditions of cRBCs were investigated, cRBCPlasma with plasma and cRBCHPL supplemented with human platelet lysate. Biomechanical characterization of cells under optical forces proves the similar features of native RBCs and cRBCHPL, and different characteristics for cRBCPlasma. To confirm these results, we also applied a second technique, digital holographic microscopy (DHM), for cells laid on the surface. OT and DHM provided related results in terms of cell deformation and membrane fluctuations, allowing a reliable discrimination between cultured and native red blood cells. The two techniques are compared and discussed in terms of application and complementarity.


Erythrocytes/metabolism , Microscopy/methods , Optical Tweezers/therapeutic use , Humans
11.
J Physiol ; 599(6): 1815-1831, 2021 03.
Article En | MEDLINE | ID: mdl-33507554

KEY POINTS: A nanomachine made of an ensemble of seven heavy-meromyosin (HMM) fragments of muscle myosin interacting with an actin filament is able to mimic the half-sarcomere generating steady force and constant-velocity shortening. To preserve Ca2+ as a free parameter, the Ca2+ -insensitive gelsolin fragment TL40 is used to attach the correctly oriented actin filament to the laser-trapped bead acting as a force transducer. The new method reveals that the performance of the nanomachine powered by myosin from frog hind-limb muscles depends on [Ca2+ ], an effect mediated by a Ca2+ -binding site in the regulatory light chain of HMM. The Ca2+ -sensitivity is class-specific because the performance of the nanomachine powered by mammalian skeletal muscle myosin is Ca2+ independent. A model simulation is able to interface the nanomachine performance with that of the muscle of origin and provides a molecular explanation of the functional diversity of muscles with different orthologue isoforms of myosin. ABSTRACT: An ensemble of seven heavy-meromyosin (HMM) fragments of myosin-II purified from the hindlimb muscles of the frog (Rana esculenta) is used to drive a synthetic nanomachine that pulls an actin filament in the absence of confounding effects of other sarcomeric proteins. In the present version of the nanomachine the +end of the actin filament is attached to the laser trapped bead via the Ca2+ -insensitive gelsolin fragment TL40, making [Ca2+ ] a free parameter. Frog myosin performance in 2 mm ATP is affected by Ca2+ : in 0.1 mm Ca2+ , the isometric steady force (F0 , 15.25 pN) is increased by 50% (P = 0.004) with respect to that in Ca2+ -free solution, the maximum shortening velocity (V0 , 4.6 µm s-1 ) is reduced by 27% (P = 0.46) and the maximum power (Pmax , 7.6 aW) is increased by 21% (P = 0.17). V0 reduction is not significant for the paucity of data at low force, although it is solidified by a similar decrease (33%, P < 0.0001) in the velocity of actin sliding as indicated by an in vitro motility assay (Vf ). The rate of ATP-hydrolysis in solution (φ) exhibits a similar calcium dependence. Ca2+ titration curves for Vf and φ give Kd values of ∼30 µm. All the above mechanical and kinetic parameters are independent of Ca2+ when HMM from rabbit psoas myosin is used, indicating that the Ca2+ -sensitivity is a class-specific property of muscle myosin. A unique multiscale model allows interfacing of the nanomachine performance to that of the muscle of origin and identifies the kinetic steps responsible for the Ca2+ -sensitivity of frog myosin.


Muscle Contraction , Myosins , Actins , Animals , Muscle, Skeletal , Myosin Type II , Protein Isoforms , Rabbits
12.
Proc Natl Acad Sci U S A ; 117(35): 21701-21710, 2020 09 01.
Article En | MEDLINE | ID: mdl-32817426

Rod photoreceptors are composed of a soma and an inner segment (IS) connected to an outer segment (OS) by a thin cilium. OSs are composed of a stack of ∼800 lipid discs surrounded by the plasma membrane where phototransduction takes place. Intracellular calcium plays a major role in phototransduction and is more concentrated in the discs, where it can be incorporated and released. To study calcium dynamics in rods, we used the fluorescent calcium dye CaSiR-1 AM working in the near-infrared (NIR) (excitation at 650 and emission at 664 nm), an advantage over previously used dyes. In this way, we investigated calcium dynamics with an unprecedented accuracy and most importantly in semidark-adapted conditions. We observed light-induced drops in [Ca2+]i with kinetics similar to that of photoresponses recorded electrophysiologically. We show three properties of the rods. First, intracellular calcium and key proteins have concentrations that vary from the OS base to tip. At the OS base, [Ca2+]i is ∼80 nM and increases up to ∼200 nM at the OS tip. Second, there are spontaneous calcium flares in healthy and functional rod OSs; these flares are highly localized and are more pronounced at the OS tip. Third, a bright flash of light at 488 nm induces a drop in [Ca2+]i at the OS base but often a flare at the OS tip. Therefore, rod OSs are not homogenous structures but have a structural and functional gradient, which is a fundamental aspect of transduction in vertebrate photoreceptors.


Calcium/metabolism , Light Signal Transduction/physiology , Retinal Rod Photoreceptor Cells/metabolism , Animals , Calcium/physiology , Cell Membrane/metabolism , Cytoplasm/metabolism , Female , Kinetics , Male , Retinal Rod Photoreceptor Cells/physiology , Rod Cell Outer Segment/physiology , Xenopus laevis
13.
PLoS Biol ; 18(7): e3000750, 2020 07.
Article En | MEDLINE | ID: mdl-32667916

Photoreceptors are specialized cells devoted to the transduction of the incoming visual signals. Rods are able also to shed from their tip old disks and to synthesize at the base of the outer segment (OS) new disks. By combining electrophysiology, optical tweezers (OTs), and biochemistry, we investigate mechanosensitivity in the rods of Xenopus laevis, and we show that 1) mechanosensitive channels (MSCs), transient receptor potential canonical 1 (TRPC1), and Piezo1 are present in rod inner segments (ISs); 2) mechanical stimulation-of the order of 10 pN-applied briefly to either the OS or IS evokes calcium transients; 3) inhibition of MSCs decreases the duration of photoresponses to bright flashes; 4) bright flashes of light induce a rapid shortening of the OS; and 5) the genes encoding the TRPC family have an ancient association with the genes encoding families of protein involved in phototransduction. These results suggest that MSCs play an integral role in rods' phototransduction.


Light Signal Transduction , Mechanotransduction, Cellular , Retinal Rod Photoreceptor Cells/metabolism , Xenopus laevis/metabolism , Animals , Calcium/metabolism , Fluorescence , Light , Light Signal Transduction/radiation effects , Mechanotransduction, Cellular/radiation effects , Multigene Family , Photic Stimulation , Retinal Rod Photoreceptor Cells/radiation effects , TRPC Cation Channels/genetics , Xenopus Proteins/genetics
14.
Mol Neurobiol ; 56(9): 6121-6133, 2019 Sep.
Article En | MEDLINE | ID: mdl-30729399

The cellular prion protein (PrPC), mainly known for its role in neurodegenerative diseases, is involved in several physiological processes including neuritogenesis. In addition, its ability to bind copper or zinc has been suggested for its role in metal homeostasis. Although PrPC has been known as a copper-binding molecule, little is known about how copper can affect PrPC physiological functions. By combining genomic approaches, cellular assays, and focal stimulation technique, we found that PrPC neuritogenesis function is directly influenced by N-terminal copper-binding amino acids. Several recombinant mouse PrP (recMoPrP) mutants at N-terminal copper-binding sites were produced, and primary hippocampal cultures were treated either in bulk or exposed near the hippocampal growth cones (GC) of single neurons in local stimulation manner. While focal stimulation of GC with wild-type recMoPrP induced neurite outgrowth and rapid GC turning toward the source, N-terminal mutants fail to support this effect. Indeed, disrupting all the copper-binding sites at the N-terminus of PrPC was toxic to neurons indicating that these regions are crucial for the protein function. Mutants at both octarepeat and non-octarepeat region abolished the neuritogenesis effect. Altogether, our findings indicate the crucial role of copper-binding sites in maintaining the neuritogenesis function in PrP, suggesting a potential link between loss-of-function of the protein and disease initiation.


Copper/metabolism , Prion Proteins/metabolism , Amino Acid Sequence , Animals , Binding Sites , Cells, Cultured , Growth Cones/metabolism , Hippocampus/cytology , Humans , Mice , Mutant Proteins/metabolism , Neurites/metabolism , Neurogenesis , Prion Proteins/chemistry , Protein Binding , Protein Structure, Secondary , Signal Transduction
15.
Nat Commun ; 9(1): 3532, 2018 08 30.
Article En | MEDLINE | ID: mdl-30166542

The contraction of striated muscle (skeletal and cardiac muscle) is generated by ATP-dependent interactions between the molecular motor myosin II and the actin filament. The myosin motors are mechanically coupled along the thick filament in a geometry not achievable by single-molecule experiments. Here we show that a synthetic one-dimensional nanomachine, comprising fewer than ten myosin II dimers purified from rabbit psoas, performs isometric and isotonic contractions at 2 mM ATP, delivering a maximum power of 5 aW. The results are explained with a kinetic model fitted to the performance of mammalian skeletal muscle, showing that the condition for the motor coordination that maximises the efficiency in striated muscle is a minimum of 32 myosin heads sharing a common mechanical ground. The nanomachine offers a powerful tool for investigating muscle contractile-protein physiology, pathology and pharmacology without the potentially disturbing effects of the cytoskeletal-and regulatory-protein environment.


Muscle, Skeletal/metabolism , Muscle, Striated/metabolism , Myosin Type II/metabolism , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/physiology , Adenosine Triphosphate/metabolism , Animals , Kinetics , Male , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Muscle, Striated/physiology , Rabbits
16.
Front Cell Neurosci ; 12: 130, 2018.
Article En | MEDLINE | ID: mdl-29867363

Mechanical stresses are always present in the cellular environment and mechanotransduction occurs in all cells. Although many experimental approaches have been developed to investigate mechanotransduction, the physical properties of the mechanical stimulus have yet to be accurately characterized. Here, we propose a mechanical stimulation method employing an oscillatory optical trap to apply piconewton forces perpendicularly to the cell membrane, for short instants. We show that this stimulation produces membrane indentation and induces cellular calcium transients in mouse neuroblastoma NG108-15 cells dependent of the stimulus strength and the number of force pulses.

17.
Front Cell Neurosci ; 12: 180, 2018.
Article En | MEDLINE | ID: mdl-29950975

[This corrects the article on p. 130 in vol. 12, PMID: 29867363.].

18.
Acta Neuropathol ; 135(4): 529-550, 2018 04.
Article En | MEDLINE | ID: mdl-29302779

Recent evidence indicates synaptic dysfunction as an early mechanism affected in neuroinflammatory diseases, such as multiple sclerosis, which are characterized by chronic microglia activation. However, the mode(s) of action of reactive microglia in causing synaptic defects are not fully understood. In this study, we show that inflammatory microglia produce extracellular vesicles (EVs) which are enriched in a set of miRNAs that regulate the expression of key synaptic proteins. Among them, miR-146a-5p, a microglia-specific miRNA not present in hippocampal neurons, controls the expression of presynaptic synaptotagmin1 (Syt1) and postsynaptic neuroligin1 (Nlg1), an adhesion protein which play a crucial role in dendritic spine formation and synaptic stability. Using a Renilla-based sensor, we provide formal proof that inflammatory EVs transfer their miR-146a-5p cargo to neuron. By western blot and immunofluorescence analysis we show that vesicular miR-146a-5p suppresses Syt1 and Nlg1 expression in receiving neurons. Microglia-to-neuron miR-146a-5p transfer and Syt1 and Nlg1 downregulation do not occur when EV-neuron contact is inhibited by cloaking vesicular phosphatidylserine residues and when neurons are exposed to EVs either depleted of miR-146a-5p, produced by pro-regenerative microglia, or storing inactive miR-146a-5p, produced by cells transfected with an anti-miR-146a-5p. Morphological analysis reveals that prolonged exposure to inflammatory EVs leads to significant decrease in dendritic spine density in hippocampal neurons in vivo and in primary culture, which is rescued in vitro by transfection of a miR-insensitive Nlg1 form. Dendritic spine loss is accompanied by a decrease in the density and strength of excitatory synapses, as indicated by reduced mEPSC frequency and amplitude. These findings link inflammatory microglia and enhanced EV production to loss of excitatory synapses, uncovering a previously unrecognized role for microglia-enriched miRNAs, released in association to EVs, in silencing of key synaptic genes.


Extracellular Vesicles/immunology , Inflammation/metabolism , MicroRNAs/metabolism , Neuroglia/immunology , Neurons/immunology , Synapses/immunology , Animals , Cells, Cultured , Cerebrospinal Fluid/metabolism , Coculture Techniques , Extracellular Vesicles/pathology , Female , Hippocampus/immunology , Hippocampus/pathology , Humans , Inflammation/pathology , Male , Mice, Inbred C57BL , Neuroglia/pathology , Neuronal Plasticity/physiology , Neurons/pathology , Primary Cell Culture , Rats, Sprague-Dawley , Synapses/pathology
19.
Appl Opt ; 57(1): A242-A249, 2018 Jan 01.
Article En | MEDLINE | ID: mdl-29328152

A single-shot water-immersion digital holographic microscope combined with broadband (white light) illumination mode is presented. This double imaging platform allows conventional incoherent visualization with phase holographic imaging of inspected samples. The holographic architecture is implemented at the image space (that is, after passing the microscope lens), thus reducing the sensitivity of the system to vibrations and/or thermal changes in comparison to regular interferometers. Because of the off-axis holographic recording principle, quantitative phase images of live biosamples can be recorded in a single camera snapshot at full-field geometry without any moving parts. And, the use of water-immersion imaging lenses maximizes the achievable resolution limit. This dual-mode microscope platform is first calibrated using microbeads, then applied to the characterization of fixed cells (neuroblastoma, breast cancer, and hippocampal neuronal cells) and, finally, validated for visualization of dynamic living cells (hippocampal neurons).


Holography/methods , Lighting/methods , Microscopy/methods , Calibration , Equipment Design , Holography/instrumentation , Immersion , Microscopy/instrumentation
20.
J Biomech ; 60: 266-269, 2017 07 26.
Article En | MEDLINE | ID: mdl-28712542

The mechanical properties of cells are influenced by their microenvironment. Here we report cell stiffness alteration by changing the cell substrate stiffness for isolated cells and cells in contact with other cells. Polydimethylsiloxane (PDMS) is used to prepare soft substrates with three different stiffness values (173, 88 and 17kPa respectively). Breast cancer cells lines, namely HBL-100, MCF-7 and MDA-MB-231 with different level of aggressiveness are cultured on these substrates and their local elasticity is investigated by vertical indentation of the cell membrane. Our preliminary results show an unforeseen behavior of the MDA-MB-231 cells. When cultured on glass substrate as isolated cells, they are less stiff than the other two types of cells, in agreement with the general statement that more aggressive and metastatic cells are softer. However, when connected to other cells the stiffness of MDA-MB-231 cells becomes similar to the other two cell lines. Moreover, the stiffness of MDA-MB-231 cells cultured on soft PDMS substrates is significantly higher than the stiffness of the other cell types, demonstrating thus the strong influence of the environmental conditions on the mechanical properties of the cells.


Breast Neoplasms/pathology , Cell Culture Techniques , Cell Line, Tumor , Dimethylpolysiloxanes , Elasticity , Humans , Mechanical Phenomena , Optical Tweezers
...