Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
J Imaging Inform Med ; 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38478187

Breast cancer holds the highest diagnosis rate among female tumors and is the leading cause of death among women. Quantitative analysis of radiological images shows the potential to address several medical challenges, including the early detection and classification of breast tumors. In the P.I.N.K study, 66 women were enrolled. Their paired Automated Breast Volume Scanner (ABVS) and Digital Breast Tomosynthesis (DBT) images, annotated with cancerous lesions, populated the first ABVS+DBT dataset. This enabled not only a radiomic analysis for the malignant vs. benign breast cancer classification, but also the comparison of the two modalities. For this purpose, the models were trained using a leave-one-out nested cross-validation strategy combined with a proper threshold selection approach. This approach provides statistically significant results even with medium-sized data sets. Additionally it provides distributional variables of importance, thus identifying the most informative radiomic features. The analysis proved the predictive capacity of radiomic models even using a reduced number of features. Indeed, from tomography we achieved AUC-ROC 89.9 % using 19 features and 92.1 % using 7 of them; while from ABVS we attained an AUC-ROC of 72.3 % using 22 features and 85.8 % using only 3 features. Although the predictive power of DBT outperforms ABVS, when comparing the predictions at the patient level, only 8.7% of lesions are misclassified by both methods, suggesting a partial complementarity. Notably, promising results (AUC-ROC ABVS-DBT 71.8 % - 74.1 % ) were achieved using non-geometric features, thus opening the way to the integration of virtual biopsy in medical routine.

2.
J Imaging ; 9(12)2023 Dec 18.
Article En | MEDLINE | ID: mdl-38132701

Imaging plays a key role in the clinical management of Coronavirus disease 2019 (COVID-19) as the imaging findings reflect the pathological process in the lungs. The visual analysis of High-Resolution Computed Tomography of the chest allows for the differentiation of parenchymal abnormalities of COVID-19, which are crucial to be detected and quantified in order to obtain an accurate disease stratification and prognosis. However, visual assessment and quantification represent a time-consuming task for radiologists. In this regard, tools for semi-automatic segmentation, such as those based on Convolutional Neural Networks, can facilitate the detection of pathological lesions by delineating their contour. In this work, we compared four state-of-the-art Convolutional Neural Networks based on the encoder-decoder paradigm for the binary segmentation of COVID-19 infections after training and testing them on 90 HRCT volumetric scans of patients diagnosed with COVID-19 collected from the database of the Pisa University Hospital. More precisely, we started from a basic model, the well-known UNet, then we added an attention mechanism to obtain an Attention-UNet, and finally we employed a recurrence paradigm to create a Recurrent-Residual UNet (R2-UNet). In the latter case, we also added attention gates to the decoding path of an R2-UNet, thus designing an R2-Attention UNet so as to make the feature representation and accumulation more effective. We compared them to gain understanding of both the cognitive mechanism that can lead a neural model to the best performance for this task and the good compromise between the amount of data, time, and computational resources required. We set up a five-fold cross-validation and assessed the strengths and limitations of these models by evaluating the performances in terms of Dice score, Precision, and Recall defined both on 2D images and on the entire 3D volume. From the results of the analysis, it can be concluded that Attention-UNet outperforms the other models by achieving the best performance of 81.93%, in terms of 2D Dice score, on the test set. Additionally, we conducted statistical analysis to assess the performance differences among the models. Our findings suggest that integrating the recurrence mechanism within the UNet architecture leads to a decline in the model's effectiveness for our particular application.

3.
Bioengineering (Basel) ; 10(9)2023 Aug 28.
Article En | MEDLINE | ID: mdl-37760117

Vision transformers represent the cutting-edge topic in computer vision and are usually employed on two-dimensional data following a transfer learning approach. In this work, we propose a trained-from-scratch stacking ensemble of 3D-vision transformers to assess prostate cancer aggressiveness from T2-weighted images to help radiologists diagnose this disease without performing a biopsy. We trained 18 3D-vision transformers on T2-weighted axial acquisitions and combined them into two- and three-model stacking ensembles. We defined two metrics for measuring model prediction confidence, and we trained all the ensemble combinations according to a five-fold cross-validation, evaluating their accuracy, confidence in predictions, and calibration. In addition, we optimized the 18 base ViTs and compared the best-performing base and ensemble models by re-training them on a 100-sample bootstrapped training set and evaluating each model on the hold-out test set. We compared the two distributions by calculating the median and the 95% confidence interval and performing a Wilcoxon signed-rank test. The best-performing 3D-vision-transformer stacking ensemble provided state-of-the-art results in terms of area under the receiving operating curve (0.89 [0.61-1]) and exceeded the area under the precision-recall curve of the base model of 22% (p < 0.001). However, it resulted to be less confident in classifying the positive class.

4.
Sci Rep ; 13(1): 7282, 2023 05 04.
Article En | MEDLINE | ID: mdl-37142690

In the last decade, Raman Spectroscopy is establishing itself as a highly promising technique for the classification of tumour tissues as it allows to obtain the biochemical maps of the tissues under investigation, making it possible to observe changes among different tissues in terms of biochemical constituents (proteins, lipid structures, DNA, vitamins, and so on). In this paper, we aim to show that techniques emerging from the cross-fertilization of persistent homology and machine learning can support the classification of Raman spectra extracted from cancerous tissues for tumour grading. In more detail, topological features of Raman spectra and machine learning classifiers are trained in combination as an automatic classification pipeline in order to select the best-performing pair. The case study is the grading of chondrosarcoma in four classes: cross and leave-one-patient-out validations have been used to assess the classification accuracy of the method. The binary classification achieves a validation accuracy of 81% and a test accuracy of 90%. Moreover, the test dataset has been collected at a different time and with different equipment. Such results are achieved by a support vector classifier trained with the Betti Curve representation of the topological features extracted from the Raman spectra, and are excellent compared with the existing literature. The added value of such results is that the model for the prediction of the chondrosarcoma grading could easily be implemented in clinical practice, possibly integrated into the acquisition system.


Bone Neoplasms , Chondrosarcoma , Humans , Spectrum Analysis, Raman/methods , Machine Learning , Neoplasm Grading , Support Vector Machine
6.
Nutrients ; 14(24)2022 Dec 07.
Article En | MEDLINE | ID: mdl-36558357

Studies in psychiatric populations have found a positive effect of Horticultural therapy (HCT) on reductions in stress levels. The main objective of the present pilot study was to evaluate the impact of the addition of HCT to conventional clinical treatment (Treatment as Usual, TaU) in a sample of six female adolescents with anorexia nervosa restricting type (AN-R), as compared to six AN-R patients, matched for sex and age, under TaU only. This is a prospective, non-profit, pilot study on patients with a previous diagnosis of AN-R and BMI < 16, recruited in 2020 in clinical settings. At enrolment (T0) and after treatment completion (TF), psychiatric assessment was performed. At T0, all the patients underwent: baseline electrocardiogram acquisition with a wearable chest strap for recording heart rate and its variability; skin conductance registration and thermal mapping of the individual's face. An olfactory identification test was administered both to evaluate the olfactory sensoriality and to assess the induced stress. One-way analyses of variance (ANOVAs) were performed to analyze modifications in clinical and physiological variables, considering time (T0, TF) as a within-subjects factor and group (experimental vs. control) as between-subjects factors. When the ANOVA was significant, post hoc analysis was performed by Paired Sample T-tests. Only in the HCT group, stress response levels, as measured by the biological parameters, improved over time. The body uneasiness level and the affective problem measures displayed a significant improvement in the HCT subjects. HCT seems to have a positive influence on stress levels in AN-R.


Anorexia Nervosa , Horticultural Therapy , Humans , Female , Adolescent , Pilot Projects , Prospective Studies , Stress, Physiological
7.
Eur Radiol Exp ; 6(1): 53, 2022 11 08.
Article En | MEDLINE | ID: mdl-36344838

NAVIGATOR is an Italian regional project boosting precision medicine in oncology with the aim of making it more predictive, preventive, and personalised by advancing translational research based on quantitative imaging and integrative omics analyses. The project's goal is to develop an open imaging biobank for the collection and preservation of a large amount of standardised imaging multimodal datasets, including computed tomography, magnetic resonance imaging, and positron emission tomography data, together with the corresponding patient-related and omics-related relevant information extracted from regional healthcare services using an adapted privacy-preserving model. The project is based on an open-source imaging biobank and an open-science oriented virtual research environment (VRE). Available integrative omics and multi-imaging data of three use cases (prostate cancer, rectal cancer, and gastric cancer) will be collected. All data confined in NAVIGATOR (i.e., standard and novel imaging biomarkers, non-imaging data, health agency data) will be used to create a digital patient model, to support the reliable prediction of the disease phenotype and risk stratification. The VRE that relies on a well-established infrastructure, called D4Science.org, will further provide a multiset infrastructure for processing the integrative omics data, extracting specific radiomic signatures, and for identification and testing of novel imaging biomarkers through big data analytics and artificial intelligence.


Artificial Intelligence , Precision Medicine , Precision Medicine/methods , Biological Specimen Banks , Positron-Emission Tomography , Biomarkers
8.
J Med Internet Res ; 24(11): e36553, 2022 11 04.
Article En | MEDLINE | ID: mdl-36331530

BACKGROUND: Ambient assisted living (AAL) is a common name for various artificial intelligence (AI)-infused applications and platforms that support their users in need in multiple activities, from health to daily living. These systems use different approaches to learn about their users and make automated decisions, known as AI models, for personalizing their services and increasing outcomes. Given the numerous systems developed and deployed for people with different needs, health conditions, and dispositions toward the technology, it is critical to obtain clear and comprehensive insights concerning AI models used, along with their domains, technology, and concerns, to identify promising directions for future work. OBJECTIVE: This study aimed to provide a scoping review of the literature on AI models in AAL. In particular, we analyzed specific AI models used in AАL systems, the target domains of the models, the technology using the models, and the major concerns from the end-user perspective. Our goal was to consolidate research on this topic and inform end users, health care professionals and providers, researchers, and practitioners in developing, deploying, and evaluating future intelligent AAL systems. METHODS: This study was conducted as a scoping review to identify, analyze, and extract the relevant literature. It used a natural language processing toolkit to retrieve the article corpus for an efficient and comprehensive automated literature search. Relevant articles were then extracted from the corpus and analyzed manually. This review included 5 digital libraries: IEEE, PubMed, Springer, Elsevier, and MDPI. RESULTS: We included a total of 108 articles. The annual distribution of relevant articles showed a growing trend for all categories from January 2010 to July 2022. The AI models mainly used unsupervised and semisupervised approaches. The leading models are deep learning, natural language processing, instance-based learning, and clustering. Activity assistance and recognition were the most common target domains of the models. Ambient sensing, mobile technology, and robotic devices mainly implemented the models. Older adults were the primary beneficiaries, followed by patients and frail persons of various ages. Availability was a top beneficiary concern. CONCLUSIONS: This study presents the analytical evidence of AI models in AAL and their domains, technologies, beneficiaries, and concerns. Future research on intelligent AAL should involve health care professionals and caregivers as designers and users, comply with health-related regulations, improve transparency and privacy, integrate with health care technological infrastructure, explain their decisions to the users, and establish evaluation metrics and design guidelines. TRIAL REGISTRATION: PROSPERO (International Prospective Register of Systematic Reviews) CRD42022347590; https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022347590.


Ambient Intelligence , Artificial Intelligence , Humans , Aged , Systematic Reviews as Topic , Technology , Privacy
9.
Article En | MEDLINE | ID: mdl-35742388

Life expectancy has increased, so the number of people in need of intensive care and attention is also growing. Falls are a major problem for older adult health, mainly because of the consequences they entail. Falls are indeed the second leading cause of unintentional death in the world. The impact on privacy, the cost, low performance, or the need to wear uncomfortable devices are the main causes for the lack of widespread solutions for fall detection and prevention. This work present a solution focused on bedtime that addresses all these causes. Bed exit is one of the most critical moments, especially when the person suffers from a cognitive impairment or has mobility problems. For this reason, this work proposes a system that monitors the position in bed in order to identify risk situations as soon as possible. This system is also combined with an automatic fall detection system. Both systems work together, in real time, offering a comprehensive solution to automatic fall detection and prevention, which is low cost and guarantees user privacy. The proposed system was experimentally validated with young adults. Results show that falls can be detected, in real time, with an accuracy of 93.51%, sensitivity of 92.04% and specificity of 95.45%. Furthermore, risk situations, such as transiting from lying on the bed to sitting on the bed side, are recognized with a 96.60% accuracy, and those where the user exits the bed are recognized with a 100% accuracy.


Algorithms , Monitoring, Ambulatory , Aged , Humans
10.
Int J Med Inform ; 165: 104823, 2022 09.
Article En | MEDLINE | ID: mdl-35763936

OBJECTIVE: Cardio-metabolic risk assessment in the general population is of paramount importance to reduce diseases burdened by high morbility and mortality. The present paper defines a strategy for out-of-hospital cardio-metabolic risk assessment, based on data acquired from contact-less sensors. METHODS: We employ Structural Equation Modeling to identify latent clinical variables of cardio-metabolic risk, related to anthropometric, glycolipidic and vascular function factors. Then, we define a set of sensor-based measurements that correlate with the clinical latent variables. RESULTS: Our measurements identify subjects with one or more risk factors in a population of 68 healthy volunteers from the EU-funded SEMEOTICONS project with accuracy 82.4%, sensitivity 82.5%, and specificity 82.1%. CONCLUSIONS: Our preliminary results strengthen the role of self-monitoring systems for cardio-metabolic risk prevention.


Cardiovascular Diseases , Anthropometry , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control , Humans , Risk Assessment/methods , Risk Factors
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 608-611, 2021 11.
Article En | MEDLINE | ID: mdl-34891367

This study proposes long wave infrared technology as a contactless alternative to wearable devices for stress detection. To this aim, we studied the change in facial thermal distribution of 17 healthy subjects in response to different stressors (Stroop Test, Mental Arithmetic Test). During the experimental sessions the electrodermal activity (EDA) and the facial thermal response were simultaneously recorded from each subject. It is well known from the literature that EDA can be considered a reliable marker for the psychological state variation, therefore we used it as a reference signal to validate the thermal results. Statistical analysis was performed to evaluate significant differences in the thermal features between stress and non-stress conditions, as well as between stress and cognitive load. Our results are in line with the outcomes of previous studies and show significant differences in the temperature trends over time between stress and resting conditions. As a new result, we found that the mean temperature changes of some less studied facial regions, e.g., the right cheek, are able not only to significantly discriminate between resting and stressful conditions, but also allow to recognize the typology of stressors. This outcome not only directs future studies to consider the thermal patterns of less explored facial regions as possible correlates of mental states, but more importantly it suggests that different psychological states could potentially be discriminated in a contactless manner.


Galvanic Skin Response , Wearable Electronic Devices , Cognition , Face , Humans
12.
Front Oncol ; 11: 802964, 2021.
Article En | MEDLINE | ID: mdl-35096605

Prostate cancer (PCa) is the most frequent male malignancy and the assessment of PCa aggressiveness, for which a biopsy is required, is fundamental for patient management. Currently, multiparametric (mp) MRI is strongly recommended before biopsy. Quantitative assessment of mpMRI might provide the radiologist with an objective and noninvasive tool for supporting the decision-making in clinical practice and decreasing intra- and inter-reader variability. In this view, high dimensional radiomics features and Machine Learning (ML) techniques, along with Deep Learning (DL) methods working on raw images directly, could assist the radiologist in the clinical workflow. The aim of this study was to develop and validate ML/DL frameworks on mpMRI data to characterize PCas according to their aggressiveness. We optimized several ML/DL frameworks on T2w, ADC and T2w+ADC data, using a patient-based nested validation scheme. The dataset was composed of 112 patients (132 peripheral lesions with Prostate Imaging Reporting and Data System (PI-RADS) score ≥ 3) acquired following both PI-RADS 2.0 and 2.1 guidelines. Firstly, ML/DL frameworks trained and validated on PI-RADS 2.0 data were tested on both PI-RADS 2.0 and 2.1 data. Then, we trained, validated and tested ML/DL frameworks on a multi PI-RADS dataset. We reported the performances in terms of Area Under the Receiver Operating curve (AUROC), specificity and sensitivity. The ML/DL frameworks trained on T2w data achieved the overall best performance. Notably, ML and DL frameworks trained and validated on PI-RADS 2.0 data obtained median AUROC values equal to 0.750 and 0.875, respectively, on unseen PI-RADS 2.0 test set. Similarly, ML/DL frameworks trained and validated on multi PI-RADS T2w data showed median AUROC values equal to 0.795 and 0.750, respectively, on unseen multi PI-RADS test set. Conversely, all the ML/DL frameworks trained and validated on PI-RADS 2.0 data, achieved AUROC values no better than the chance level when tested on PI-RADS 2.1 data. Both ML/DL techniques applied on mpMRI seem to be a valid aid in predicting PCa aggressiveness. In particular, ML/DL frameworks fed with T2w images data (objective, fast and non-invasive) show good performances and might support decision-making in patient diagnostic and therapeutic management, reducing intra- and inter-reader variability.

13.
Diagnostics (Basel) ; 10(11)2020 Nov 03.
Article En | MEDLINE | ID: mdl-33153140

Our purpose is to evaluate the performance of magnetic resonance (MR) radiomics analysis for differentiating between malignant and benign parotid neoplasms and, among the latter, between pleomorphic adenomas and Warthin tumors. We retrospectively evaluated 75 T2-weighted images of parotid gland lesions, of which 61 were benign tumors (32 pleomorphic adenomas, 23 Warthin tumors and 6 oncocytomas) and 14 were malignant tumors. A receiver operating characteristics (ROC) curve analysis was performed to find the threshold values for the most discriminative features and determine their sensitivity, specificity and area under the ROC curve (AUROC). The most discriminative features were used to train a support vector machine classifier. The best classification performance was obtained by comparing a pleomorphic adenoma with a Warthin tumor (yielding sensitivity, specificity and a diagnostic accuracy as high as 0.8695, 0.9062 and 0.8909, respectively) and a pleomorphic adenoma with malignant tumors (sensitivity, specificity and a diagnostic accuracy of 0.6666, 0.8709 and 0.8043, respectively). Radiomics analysis of parotid tumors on conventional T2-weighted MR images allows the discrimination of pleomorphic adenomas from Warthin tumors and malignant tumors with a high sensitivity, specificity and diagnostic accuracy.

14.
Sensors (Basel) ; 19(17)2019 Aug 22.
Article En | MEDLINE | ID: mdl-31443499

Biologically inspired to mammalian olfactory system, electronic noses became popular during the last three decades. In literature, as well as in daily practice, a wide range of applications are reported. Nevertheless, the most pioneering one has been (and still is) the assessment of the human breath composition. In this study, we used a prototype of electronic nose, called Wize Sniffer (WS) and based it on an array of semiconductor gas sensor, to detect ammonia in the breath of patients suffering from severe liver impairment. In the setting of severely impaired liver, toxic substances, such as ammonia, accumulate in the systemic circulation and in the brain. This may result in Hepatic Encephalopathy (HE), a spectrum of neuro-psychiatric abnormalities which include changes in cognitive functions, consciousness, and behaviour. HE can be detected only by specific but time-consuming and burdensome examinations, such as blood ammonia levels assessment and neuro-psychological tests. In the presented proof-of-concept study, we aimed at investigating the possibility of discriminating the severity degree of liver impairment on the basis of the detected breath ammonia, in view of the detection of HE at its early stage.


Gases/isolation & purification , Hepatic Encephalopathy/diagnosis , Liver/chemistry , Monitoring, Physiologic/methods , Breath Tests , Carbon Monoxide/chemistry , Carbon Monoxide/isolation & purification , Electronic Nose , Gases/chemistry , Hepatic Encephalopathy/pathology , Humans , Hydrogen/chemistry , Hydrogen/isolation & purification , Liver/pathology
15.
Comput Biol Med ; 88: 161-162, 2017 09 01.
Article En | MEDLINE | ID: mdl-28735153

The quality of life and individual well-being are universally recognised as key factors in disease prevention. In particular, lifestyle interventions are effective tools for reducing the risk and incidence of major illnesses, such as cardiovascular diseases and metabolic disorders. On the other hand, patient role is progressively shifting from being a passive recipient of care towards being a co-producer of her/his health. In this frame, novel devices and systems able to help individuals in self-evaluation are expected to play a crucial role. In this special issue we focus on innovative methodologies and technologies devoted to individual self-assessment, oriented both to healthy people to maintain their well-being, and to diseased persons to improve their care.


Monitoring, Physiologic , Self Care , Healthy Lifestyle , Humans , Quality of Life
16.
Stud Health Technol Inform ; 207: 390-9, 2014.
Article En | MEDLINE | ID: mdl-25488245

This paper discusses the problem of fostering lifestyle changes towards healthier habits via tailored user guidance. We present a novel multisensory device, the Wize Mirror, which will be able to detect semeiotic face signs related to cardio-metabolic risk, and encourage users to reduce their risk by improving their lifestyle. Offering a proper user guidance requires solving three main issues: user profiling, definition of a wellness index based on biophysical data, and personalized guidance by means of coaching and supportive messages. For each of these issues, the solutions proposed in the EU FP7 Project SEMEOTICONS are presented, highlighting their advantages with respect to the state-of-the-art.


Cardiovascular Diseases/prevention & control , Facial Expression , Health Promotion/methods , Healthy Lifestyle , Metabolic Diseases/prevention & control , Skin Pigmentation , Humans
17.
Artif Intell Med ; 50(2): 95-104, 2010 Oct.
Article En | MEDLINE | ID: mdl-20684873

OBJECTIVE: Signal and imaging investigations are currently key components in the diagnosis, prognosis and follow up of heart diseases. Nowadays, the need for more efficient, cost-effective and personalised care has led to a renaissance of clinical decision support systems (CDSSs). The purpose of this paper is to present an effective way of achieving a high-level integration of signal and image processing methods in the general process of care, by means of a clinical decision support system, and to discuss the advantages of such an approach. From the wide range of heart diseases, heart failure, whose complexity best highlights the benefits of this integration, has been selected. METHODS: After an analysis of users' needs and expectations, significant and suitably designed image and signal processing algorithms are introduced to objectively and reliably evaluate important features involved in decisional problems in the heart failure domain. Then, a CDSS is conceived so as to combine the domain knowledge with advanced analytical tools for data processing. In particular, the relevant and significant medical knowledge and experts' knowhow are formalised according to an ontological formalism, suitably augmented with a base of rules for inferential reasoning. RESULTS: The proposed methods were tested and evaluated in the daily practice of the physicians operating at the Department of Cardiology, University Magna Graecia, Catanzaro, Italy, on a population of 79 patients. Different scenarios, involving decisional problems based on the analysis of biomedical signals and images, were considered. In these scenarios, after some training and 3 months of use, the CDSS was able to provide important and useful suggestions in routine workflows, by integrating the clinical parameters computed through the developed methods for echocardiographic image segmentation and the algorithms for electrocardiography processing. CONCLUSIONS: The CDSS allows the integration of signal and image processing algorithms into the general process of care. Feedback from end-users has been positive.


Decision Support Systems, Clinical , Heart Failure/diagnosis , Heart Failure/therapy , Electrocardiography , Heart Failure/diagnostic imaging , Humans , Image Interpretation, Computer-Assisted , Prognosis , Ultrasonography
18.
...