Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Cell ; 173(2): 338-354.e15, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625051

RESUMEN

Cancer progression involves the gradual loss of a differentiated phenotype and acquisition of progenitor and stem-cell-like features. Here, we provide novel stemness indices for assessing the degree of oncogenic dedifferentiation. We used an innovative one-class logistic regression (OCLR) machine-learning algorithm to extract transcriptomic and epigenetic feature sets derived from non-transformed pluripotent stem cells and their differentiated progeny. Using OCLR, we were able to identify previously undiscovered biological mechanisms associated with the dedifferentiated oncogenic state. Analyses of the tumor microenvironment revealed unanticipated correlation of cancer stemness with immune checkpoint expression and infiltrating immune cells. We found that the dedifferentiated oncogenic phenotype was generally most prominent in metastatic tumors. Application of our stemness indices to single-cell data revealed patterns of intra-tumor molecular heterogeneity. Finally, the indices allowed for the identification of novel targets and possible targeted therapies aimed at tumor differentiation.


Asunto(s)
Desdiferenciación Celular/genética , Aprendizaje Automático , Neoplasias/patología , Carcinogénesis , Metilación de ADN , Bases de Datos Genéticas , Epigénesis Genética , Humanos , MicroARNs/metabolismo , Metástasis de la Neoplasia , Neoplasias/genética , Células Madre/citología , Células Madre/metabolismo , Transcriptoma , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA