Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain ; 147(4): 1216-1230, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37812819

RESUMEN

Dravet syndrome is a severe epileptic encephalopathy, characterized by drug-resistant epilepsy, severe cognitive and behavioural deficits, with increased risk of sudden unexpected death (SUDEP). It is caused by haploinsufficiency of SCN1A gene encoding for the α-subunit of the voltage-gated sodium channel Nav1.1. Therapeutic approaches aiming to upregulate the healthy copy of SCN1A gene to restore its normal expression levels are being developed. However, whether Scn1a gene function is required only during a specific developmental time-window or, alternatively, if its physiological expression is necessary in adulthood is untested up to now. We induced Scn1a gene haploinsufficiency at two ages spanning postnatal brain development (P30 and P60) and compared the phenotypes of those mice to Scn1a perinatally induced mice (P2), recapitulating all deficits of Dravet mice. Induction of heterozygous Nav1.1 mutation at P30 and P60 elicited susceptibility to the development of both spontaneous and hyperthermia-induced seizures and SUDEP rates comparable to P2-induced mice, with symptom onset accompanied by the characteristic GABAergic interneuron dysfunction. Finally, delayed Scn1a haploinsufficiency induction provoked hyperactivity, anxiety and social attitude impairment at levels comparable to age matched P2-induced mice, while it was associated with a better cognitive performance, with P60-induced mice behaving like the control group. Our data show that maintenance of physiological levels of Nav1.1 during brain development is not sufficient to prevent Dravet symptoms and that long-lasting restoration of Scn1a gene expression would be required to grant optimal clinical benefit in patients with Dravet syndrome.


Asunto(s)
Epilepsias Mioclónicas , Muerte Súbita e Inesperada en la Epilepsia , Humanos , Ratones , Animales , Canal de Sodio Activado por Voltaje NAV1.1/genética , Epilepsias Mioclónicas/genética , Interneuronas/fisiología , Encéfalo , Mutación , Modelos Animales de Enfermedad
3.
Nat Commun ; 14(1): 3212, 2023 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-37270547

RESUMEN

Within the chromatin, distal elements interact with promoters to regulate specific transcriptional programs. Histone acetylation, interfering with the net charges of the nucleosomes, is a key player in this regulation. Here, we report that the oncoprotein SET is a critical determinant for the levels of histone acetylation within enhancers. We disclose that a condition in which SET is accumulated, the severe Schinzel-Giedion Syndrome (SGS), is characterized by a failure in the usage of the distal regulatory regions typically employed during fate commitment. This is accompanied by the usage of alternative enhancers leading to a massive rewiring of the distal control of the gene transcription. This represents a (mal)adaptive mechanism that, on one side, allows to achieve a certain degree of differentiation, while on the other affects the fine and corrected maturation of the cells. Thus, we propose the differential in cis-regulation as a contributing factor to the pathological basis of SGS and possibly other the SET-related disorders in humans.


Asunto(s)
Elementos de Facilitación Genéticos , Histonas , Humanos , Histonas/genética , Histonas/metabolismo , Elementos de Facilitación Genéticos/genética , Diferenciación Celular/genética , Cromatina/genética , Regiones Promotoras Genéticas/genética
4.
Nat Commun ; 13(1): 161, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013317

RESUMEN

Dravet syndrome is a severe epileptic encephalopathy caused primarily by haploinsufficiency of the SCN1A gene. Repetitive seizures can lead to endurable and untreatable neurological deficits. Whether this severe pathology is reversible after symptom onset remains unknown. To address this question, we generated a Scn1a conditional knock-in mouse model (Scn1a Stop/+) in which Scn1a expression can be re-activated on-demand during the mouse lifetime. Scn1a gene disruption leads to the development of seizures, often associated with sudden unexpected death in epilepsy (SUDEP) and behavioral alterations including hyperactivity, social interaction deficits and cognitive impairment starting from the second/third week of age. However, we showed that Scn1a gene re-activation when symptoms were already manifested (P30) led to a complete rescue of both spontaneous and thermic inducible seizures, marked amelioration of behavioral abnormalities and normalization of hippocampal fast-spiking interneuron firing. We also identified dramatic gene expression alterations, including those associated with astrogliosis in Dravet syndrome mice, that, accordingly, were rescued by Scn1a gene expression normalization at P30. Interestingly, regaining of Nav1.1 physiological level rescued seizures also in adult Dravet syndrome mice (P90) after months of repetitive attacks. Overall, these findings represent a solid proof-of-concept highlighting that disease phenotype reversibility can be achieved when Scn1a gene activity is efficiently reconstituted in brain cells.


Asunto(s)
Disfunción Cognitiva/genética , Epilepsias Mioclónicas/genética , Hipocampo/metabolismo , Interneuronas/metabolismo , Canal de Sodio Activado por Voltaje NAV1.1/genética , Muerte Súbita e Inesperada en la Epilepsia/prevención & control , Potenciales de Acción/fisiología , Animales , Cerebelo/metabolismo , Cerebelo/fisiopatología , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiopatología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/prevención & control , Cuerpo Estriado/metabolismo , Cuerpo Estriado/fisiopatología , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Epilepsias Mioclónicas/metabolismo , Epilepsias Mioclónicas/fisiopatología , Epilepsias Mioclónicas/prevención & control , Técnicas de Sustitución del Gen , Terapia Genética/métodos , Hipocampo/fisiopatología , Humanos , Interneuronas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.1/deficiencia , Muerte Súbita e Inesperada en la Epilepsia/patología
5.
Dev Neurosci ; 43(3-4): 253-261, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33940579

RESUMEN

Brain development is a complex process that requires a series of precise and coordinated events to take place. When alterations in some of those events occur, neurodevelopmental disorders (NDDs) may appear, with their characteristic symptoms, including cognitive, social motor deficits, and epilepsy. While pharmacologic treatments have been the only therapeutic options for many years, more recently the research is turning to the direct removal of the underlying genetic cause of each specific NDD. This is possible thanks to the increased knowledge of genetic basis of those diseases and the enormous advances in genome-editing tools. Together with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based strategies, there is a great development also of nuclease defective Cas9 (dCas9) tools that, with an extreme flexibility, allow the recruitment of specific protein functions to the desired genomic sites. In this work, we review dCas9-based tools and discuss all the published applications in the setting of therapeutic approaches for NDDs at the preclinical level. In particular, dCas9-based therapeutic strategies for Dravet syndrome, transcallosal dysconnectivity caused by mutations in C11orf46 gene, and Fragile X syndrome are presented and discussed. A direct comparison with other possible therapeutic strategies, such as classic gene replacement or CRISPR/Cas9-based strategies, is provided. We also highlight not only those aspects that constitute a clear advantage compared to previous strategies but also the main technical hurdles related to their applications that need to be overcome.


Asunto(s)
Sistemas CRISPR-Cas , Trastornos del Neurodesarrollo , Sistemas CRISPR-Cas/genética , Edición Génica , Terapia Genética , Humanos , Mutación , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/terapia
6.
Front Neurosci ; 15: 632522, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679313

RESUMEN

In vivo genome editing tools, such as those based on CRISPR, have been increasingly utilized in both basic and translational neuroscience research. There are currently nine in vivo non-CNS genome editing therapies in clinical trials, and the pre-clinical pipeline of major biotechnology companies demonstrate that this number will continue to grow. Several biotechnology companies commercializing in vivo genome editing and modification technologies are developing therapies for CNS disorders with accompanying large partnering deals. In this review, the authors discuss the current genome editing and modification therapy pipeline and those in development to treat CNS disorders. The authors also discuss the technical and commercial limitations to translation of these same therapies and potential avenues to overcome these hurdles.

7.
Nat Commun ; 11(1): 4178, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32826895

RESUMEN

Friedreich's ataxia (FRDA) is an autosomal-recessive neurodegenerative and cardiac disorder which occurs when transcription of the FXN gene is silenced due to an excessive expansion of GAA repeats into its first intron. Herein, we generate dorsal root ganglia organoids (DRG organoids) by in vitro differentiation of human iPSCs. Bulk and single-cell RNA sequencing show that DRG organoids present a transcriptional signature similar to native DRGs and display the main peripheral sensory neuronal and glial cell subtypes. Furthermore, when co-cultured with human intrafusal muscle fibers, DRG organoid sensory neurons contact their peripheral targets and reconstitute the muscle spindle proprioceptive receptors. FRDA DRG organoids model some molecular and cellular deficits of the disease that are rescued when the entire FXN intron 1 is removed, and not with the excision of the expanded GAA tract. These results strongly suggest that removal of the repressed chromatin flanking the GAA tract might contribute to rescue FXN total expression and fully revert the pathological hallmarks of FRDA DRG neurons.


Asunto(s)
Ataxia de Friedreich/genética , Ataxia de Friedreich/patología , Ganglios Espinales/metabolismo , Edición Génica/métodos , Proteínas de Unión a Hierro/genética , Organoides/metabolismo , Células Receptoras Sensoriales/metabolismo , Antioxidantes/farmacología , Sistemas CRISPR-Cas , Diferenciación Celular , Cromatina/metabolismo , Ataxia de Friedreich/tratamiento farmacológico , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/patología , Predisposición Genética a la Enfermedad/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Intrones , Mitocondrias/metabolismo , Organoides/efectos de los fármacos , Organoides/patología , Células Receptoras Sensoriales/patología , Análisis de Secuencia de ARN , Transcriptoma , Frataxina
8.
Brain ; 143(3): 891-905, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32129831

RESUMEN

Epilepsy is a major health burden, calling for new mechanistic insights and therapies. CRISPR-mediated gene editing shows promise to cure genetic pathologies, although hitherto it has mostly been applied ex vivo. Its translational potential for treating non-genetic pathologies is still unexplored. Furthermore, neurological diseases represent an important challenge for the application of CRISPR, because of the need in many cases to manipulate gene function of neurons in situ. A variant of CRISPR, CRISPRa, offers the possibility to modulate the expression of endogenous genes by directly targeting their promoters. We asked if this strategy can effectively treat acquired focal epilepsy, focusing on ion channels because their manipulation is known be effective in changing network hyperactivity and hypersynchronziation. We applied a doxycycline-inducible CRISPRa technology to increase the expression of the potassium channel gene Kcna1 (encoding Kv1.1) in mouse hippocampal excitatory neurons. CRISPRa-mediated Kv1.1 upregulation led to a substantial decrease in neuronal excitability. Continuous video-EEG telemetry showed that AAV9-mediated delivery of CRISPRa, upon doxycycline administration, decreased spontaneous generalized tonic-clonic seizures in a model of temporal lobe epilepsy, and rescued cognitive impairment and transcriptomic alterations associated with chronic epilepsy. The focal treatment minimizes concerns about off-target effects in other organs and brain areas. This study provides the proof-of-principle for a translational CRISPR-based approach to treat neurological diseases characterized by abnormal circuit excitability.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Disfunción Cognitiva/genética , Disfunción Cognitiva/prevención & control , Epilepsia del Lóbulo Temporal/prevención & control , Edición Génica/métodos , Canal de Potasio Kv.1.1/biosíntesis , Adenoviridae , Animales , Electroencefalografía , Epilepsia del Lóbulo Temporal/complicaciones , Femenino , Hipocampo/metabolismo , Masculino , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Ratones , Neuronas/fisiología , Cultivo Primario de Células , Transfección , Regulación hacia Arriba
9.
Mol Ther ; 28(1): 235-253, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31607539

RESUMEN

Dravet syndrome (DS) is a severe epileptic encephalopathy caused mainly by heterozygous loss-of-function mutations of the SCN1A gene, indicating haploinsufficiency as the pathogenic mechanism. Here we tested whether catalytically dead Cas9 (dCas9)-mediated Scn1a gene activation can rescue Scn1a haploinsufficiency in a mouse DS model and restore physiological levels of its gene product, the Nav1.1 voltage-gated sodium channel. We screened single guide RNAs (sgRNAs) for their ability to stimulate Scn1a transcription in association with the dCas9 activation system. We identified a specific sgRNA that increases Scn1a gene expression levels in cell lines and primary neurons with high specificity. Nav1.1 protein levels were augmented, as was the ability of wild-type immature GABAergic interneurons to fire action potentials. A similar enhancement of Scn1a transcription was achieved in mature DS interneurons, rescuing their ability to fire. To test the therapeutic potential of this approach, we delivered the Scn1a-dCas9 activation system to DS pups using adeno-associated viruses. Parvalbumin interneurons recovered their firing ability, and febrile seizures were significantly attenuated. Our results pave the way for exploiting dCas9-based gene activation as an effective and targeted approach to DS and other disorders resulting from altered gene dosage.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Epilepsias Mioclónicas/terapia , Terapia Genética/métodos , Interneuronas/metabolismo , Canal de Sodio Activado por Voltaje NAV1.1/genética , Convulsiones/terapia , Activación Transcripcional , Potenciales de Acción , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Neuronas GABAérgicas/metabolismo , Hipocampo/citología , Hipocampo/embriología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Resultado del Tratamiento
10.
Cell Rep ; 29(13): 4646-4656.e4, 2019 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-31875567

RESUMEN

Stem cell-derived neurons are generally obtained in mass cultures that lack both spatial organization and any meaningful connectivity. We implement a microfluidic system for long-term culture of human neurons with patterned projections and synaptic terminals. Co-culture of human midbrain dopaminergic and striatal medium spiny neurons on the microchip establishes an orchestrated nigro-striatal circuitry with functional dopaminergic synapses. We use this platform to dissect the mitochondrial dysfunctions associated with a genetic form of Parkinson's disease (PD) with OPA1 mutations. Remarkably, we find that axons of OPA1 mutant dopaminergic neurons exhibit a significant reduction of mitochondrial mass. This defect causes a significant loss of dopaminergic synapses, which worsens in long-term cultures. Therefore, PD-associated depletion of mitochondria at synapses might precede loss of neuronal connectivity and neurodegeneration. In vitro reconstitution of human circuitries by microfluidic technology offers a powerful system to study brain networks by establishing ordered neuronal compartments and correct synapse identity.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , GTP Fosfohidrolasas/metabolismo , Dispositivos Laboratorio en un Chip , Mitocondrias/metabolismo , Neostriado/metabolismo , Sustancia Negra/metabolismo , Sinapsis/metabolismo , Axones/metabolismo , Células Cultivadas , GTP Fosfohidrolasas/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mutación/genética , Red Nerviosa/metabolismo , Neuritas/metabolismo , Enfermedad de Parkinson/metabolismo
11.
Cells ; 8(8)2019 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-31426584

RESUMEN

Crohn's disease (CD) is a chronic inflammatory condition that can affect different portions of the gastrointestinal tract. Lymphatic drainage was demonstrated to be dysfunctional in CD pathogenesis, ultimately causing the failure of the resolution of intestinal inflammation. To investigate the molecular mechanisms underlying these dysfunctions, we isolated human intestinal lymphatic endothelial cells (HILECs) from surgical specimens of patients undergoing resection for complicated CD (CD HILEC) and from a disease-free margin of surgical specimens of patients undergoing resection for cancer (healthy HILEC). Both cell types underwent transcriptomic profiling, and their barrier functionality was tested using a transwell-based co-culture system between HILEC and lamina propria mononuclear cells (LPMCs). Results showed CD HILEC displayed a peculiar transcriptomic signature that highlighted mTOR signaling as an orchestrator of leukocyte trafficking through the lymphatic barrier of CD patients. Moreover, we demonstrated that LPMC transmigration through the lymphatic endothelium of patients with CD depends on the capability of mTOR to trigger interleukin 20 receptor subunit α (IL20RA)-mediated intracellular signaling. Conclusively, our study suggests that leukocyte trafficking through the intestinal lymphatic microvasculature can be controlled by modulating IL20RA, thus leading to the resolution of chronic inflammation in patients with CD.


Asunto(s)
Enfermedad de Crohn/inmunología , Células Endoteliales/inmunología , Endotelio Linfático/inmunología , Intestinos/inmunología , Serina-Treonina Quinasas TOR/fisiología , Anciano , Movimiento Celular/inmunología , Células Endoteliales/patología , Endotelio Linfático/patología , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Intestinos/patología , Masculino , Persona de Mediana Edad , Receptores de Interleucina/inmunología
12.
Front Neurosci ; 13: 283, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30971887

RESUMEN

In recent years, the need to derive sources of specialized cell types to be employed for cell replacement therapies and modeling studies has triggered a fast acceleration of novel cell reprogramming methods. In particular, in neuroscience, a number of protocols for the efficient differentiation of somatic or pluripotent stem cells have been established to obtain a renewable source of different neuronal cell types. Alternatively, several neuronal populations have been generated through direct reprogramming/transdifferentiation, which concerns the conversion of fully differentiated somatic cells into induced neurons. This is achieved through the forced expression of selected transcription factors (TFs) in the donor cell population. The reprogramming cocktail is chosen after an accurate screening process involving lists of TFs enriched into desired cell lineages. In some instances, this type of studies has revealed the crucial role of TFs whose function in the differentiation of a given specific cell type had been neglected or underestimated. Herein, we will speculate on how the in vitro studies have served to better understand physiological mechanisms of neuronal development in vivo.

13.
Dev Biol ; 434(2): 231-248, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29305158

RESUMEN

During cerebral cortex development, neural progenitors are required to elaborate a variety of cell differentiation signals to which they are continuously exposed. RA acid is a potent inducer of neuronal differentiation as it was found to influence cortical development. We report herein that TBR2, a transcription factor specific to Intermediate (Basal) Neural Progenitors (INPs), represses activation of the RA responsive element and expression of RA target genes in cell lines. This repressive action on RA signaling was functionally confirmed by the decrease of RA-mediated neuronal differentiation in neural stem cells stably overexpressing TBR2. In vivo mapping of RA activity in the developing cortex indicated that RA activity is detected in radial glial cells and subsequently downregulated in INPs, revealing a fine cell-type specific regulation of its signaling. Thus, TBR2 might be a molecular player in opposing RA signaling in INPs. Interestingly, this negative regulation is achieved at least in part by directly repressing the critical nuclear RA co-factor ZFP423. Indeed, we found ZFP423 to be expressed in the developing cortex and promote RA-dependent neuronal differentiation. These data indicate that TBR2 contributes to suppressing RA signaling in INPs, thereby enabling them to re-enter the cell cycle and delay neuronal differentiation.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Corteza Cerebral/embriología , Proteínas de Unión al ADN/metabolismo , Células-Madre Neurales/metabolismo , Organogénesis/efectos de los fármacos , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/metabolismo , Tretinoina/farmacología , Animales , Diferenciación Celular/genética , Línea Celular Tumoral , Corteza Cerebral/citología , Proteínas de Unión al ADN/genética , Ratones , Células-Madre Neurales/citología , Organogénesis/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteínas de Dominio T Box/genética , Factores de Transcripción/genética
15.
Cereb Cortex ; 27(6): 3378-3396, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27600842

RESUMEN

The T-box containing Tbr2 gene encodes for a transcription factor essential for the specification of the intermediate neural progenitors (INPs) originating the excitatory neurons of the cerebral cortex. However, its overall mechanism of action, direct target genes and cofactors remain unknown. Herein, we carried out global gene expression profiling combined with genome-wide binding site identification to determine the molecular pathways regulated by TBR2 in INPs. This analysis led to the identification of novel protein-protein interactions that control multiple features of INPs including cell-type identity, morphology, proliferation and migration dynamics. In particular, NEUROG2 and JMJD3 were found to associate with TBR2 revealing unexplored TBR2-dependent mechanisms. These interactions can explain, at least in part, the role of this transcription factor in the implementation of the molecular program controlling developmental milestones during corticogenesis. These data identify TBR2 as a major determinant of the INP-specific traits by regulating both genetic and epigenetic pathways.


Asunto(s)
Diferenciación Celular/genética , Corteza Cerebral/citología , Regulación del Desarrollo de la Expresión Génica/genética , Células-Madre Neurales/fisiología , Neuronas/fisiología , Proteínas de Dominio T Box/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ciclo Celular/genética , Movimiento Celular/genética , Polaridad Celular/genética , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/fisiología , Redes Reguladoras de Genes/genética , Hipocampo/citología , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis por Micromatrices , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/metabolismo
16.
Cell Stem Cell ; 17(6): 719-734, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26526726

RESUMEN

Transplantation of GABAergic interneurons (INs) can provide long-term functional benefits in animal models of epilepsy and other neurological disorders. Whereas GABAergic INs can be differentiated from embryonic stem cells, alternative sources of GABAergic INs may be more tractable for disease modeling and transplantation. We identified five factors (Foxg1, Sox2, Ascl1, Dlx5, and Lhx6) that convert mouse fibroblasts into induced GABAergic INs (iGABA-INs) possessing molecular signatures of telencephalic INs. Factor overexpression activates transcriptional networks required for GABAergic fate specification. iGABA-INs display progressively maturing firing patterns comparable to cortical INs, form functional synapses, and release GABA. Importantly, iGABA-INs survive and mature upon being grafted into mouse hippocampus. Optogenetic stimulation demonstrated functional integration of grafted iGABA-INs into host circuitry, triggering inhibition of host granule neuron activity. These five factors also converted human cells into functional GABAergic INs. These properties suggest that iGABA-INs have potential for disease modeling and cell-based therapeutic approaches to neurological disorders.


Asunto(s)
Reprogramación Celular , Fibroblastos/citología , Interneuronas/citología , Prosencéfalo/citología , Ácido gamma-Aminobutírico/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Linaje de la Célula , Técnicas de Cocultivo , Células Madre Embrionarias/citología , Factores de Transcripción Forkhead/metabolismo , Perfilación de la Expresión Génica , Hipocampo/citología , Humanos , Ratones , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Factores de Transcripción SOXB1/metabolismo , Sinapsis/metabolismo , Telencéfalo/citología , Transcripción Genética
17.
Curr Opin Genet Dev ; 34: 95-101, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26476692

RESUMEN

During development, neural progenitor cells (NPCs) that are capable of self-renewing maintain a proliferative cellular pool while generating all differentiated neural cell components. Although the genetic network of transcription factors (TFs) required for neural specification has been well characterized, the unique set of histone modifications that accompanies this process has only recently started to be investigated. In vitro neural differentiation of pluripotent stem cells is emerging as a powerful system to examine epigenetic programs. Deciphering the histone code and how it shapes the chromatin environment will reveal the intimate link between epigenetic changes and mechanisms for neural fate determination in the developing nervous system. Furthermore, it will offer a molecular framework for a stringent comparison between native and induced neural stem cells (iNSCs) generated by direct neural cell conversion.


Asunto(s)
Epigénesis Genética , Código de Histonas/genética , Células-Madre Neurales/metabolismo , Células Madre Pluripotentes/metabolismo , Animales , Diferenciación Celular/genética , Cromatina/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Redes Reguladoras de Genes/genética , Células-Madre Neurales/citología , Neuronas/citología , Neuronas/metabolismo , Células Madre Pluripotentes/citología
18.
Stem Cell Reports ; 4(1): 25-36, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25556566

RESUMEN

Direct cell reprogramming enables direct conversion of fibroblasts into functional neurons and oligodendrocytes using a minimal set of cell-lineage-specific transcription factors. This approach is rapid and simple, generating the cell types of interest in one step. However, it remains unknown whether this technology can be applied to convert fibroblasts into astrocytes, the third neural lineage. Astrocytes play crucial roles in neuronal homeostasis, and their dysfunctions contribute to the origin and progression of multiple human diseases. Herein, we carried out a screening using several transcription factors involved in defining the astroglial cell fate and identified NFIA, NFIB, and SOX9 to be sufficient to convert with high efficiency embryonic and postnatal mouse fibroblasts into astrocytes (iAstrocytes). We proved both by gene-expression profiling and functional tests that iAstrocytes are comparable to native brain astrocytes. This protocol can be then employed to generate functional iAstrocytes for a wide range of experimental applications.


Asunto(s)
Astrocitos/citología , Astrocitos/metabolismo , Transdiferenciación Celular/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Factores de Transcripción/genética , Animales , Astrocitos/efectos de los fármacos , Biomarcadores , Transdiferenciación Celular/efectos de los fármacos , Células Cultivadas , Reprogramación Celular/genética , Análisis por Conglomerados , Citocinas/metabolismo , Citocinas/farmacología , Fibroblastos/efectos de los fármacos , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Fenotipo , Factores de Transcripción/metabolismo
19.
Cereb Cortex ; 25(2): 322-35, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23968833

RESUMEN

Mutations in the Aristaless-related homeobox (ARX) gene are found in a spectrum of epilepsy and X-linked intellectual disability disorders. During development Arx is expressed in pallial ventricular zone (VZ) progenitor cells where the excitatory projection neurons of the cortex are born. Arx(-/Y) mice were shown to have decreased proliferation in the cortical VZ resulting in smaller brains; however, the basis for this reduced proliferation was not established. To determine the role of ARX on cell cycle dynamics in cortical progenitor cells, we generated cerebral cortex-specific Arx mouse mutants (cKO). The loss of pallial Arx resulted in the reduction of cortical progenitor cells, particularly the proliferation of intermediate progenitor cells (IPCs) was affected. Later in development and postnatally cKO brains showed a reduction of upper layer but not deeper layer neurons consistent with the IPC defect. Transcriptional profile analysis of E14.5 Arx-ablated cortices compared with control revealed that CDKN1C, an inhibitor of cell cycle progression, is overexpressed in the cortical VZ and SVZ of Arx KOs throughout corticogenesis. We also identified ARX as a direct regulator of Cdkn1c transcription. Together these data support a model where ARX regulates the expansion of cortical progenitor cells through repression of Cdkn1c.


Asunto(s)
Ciclo Celular/fisiología , Corteza Cerebral/crecimiento & desarrollo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas de Homeodominio/metabolismo , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Factores de Transcripción/metabolismo , Animales , Recuento de Células , Proliferación Celular/fisiología , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Proteínas de Homeodominio/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mitosis/fisiología , Células-Madre Neurales/patología , Neuroglía/patología , Neuroglía/fisiología , Neuronas/patología , Neuronas/fisiología , Bulbo Olfatorio/crecimiento & desarrollo , Bulbo Olfatorio/patología , Bulbo Olfatorio/fisiopatología , Tamaño de los Órganos , Factores de Transcripción/genética , Transcriptoma
20.
J Clin Invest ; 124(7): 3215-29, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24937431

RESUMEN

Direct lineage reprogramming through genetic-based strategies enables the conversion of differentiated somatic cells into functional neurons and distinct neuronal subtypes. Induced dopaminergic (iDA) neurons can be generated by direct conversion of skin fibroblasts; however, their in vivo phenotypic and functional properties remain incompletely understood, leaving their impact on Parkinson's disease (PD) cell therapy and modeling uncertain. Here, we determined that iDA neurons retain a transgene-independent stable phenotype in culture and in animal models. Furthermore, transplanted iDA neurons functionally integrated into host neuronal tissue, exhibiting electrically excitable membranes, synaptic currents, dopamine release, and substantial reduction of motor symptoms in a PD animal model. Neuronal cell replacement approaches will benefit from a system that allows the activity of transplanted neurons to be controlled remotely and enables modulation depending on the physiological needs of the recipient; therefore, we adapted a DREADD (designer receptor exclusively activated by designer drug) technology for remote and real-time control of grafted iDA neuronal activity in living animals. Remote DREADD-dependent iDA neuron activation markedly enhanced the beneficial effects in transplanted PD animals. These data suggest that iDA neurons have therapeutic potential as a cell replacement approach for PD and highlight the applicability of pharmacogenetics for enhancing cellular signaling in reprogrammed cell-based approaches.


Asunto(s)
Neuronas Dopaminérgicas/trasplante , Trastornos Parkinsonianos/terapia , Animales , Encéfalo/patología , Encéfalo/fisiopatología , Transdiferenciación Celular/genética , Clozapina/análogos & derivados , Clozapina/farmacología , Drogas de Diseño , Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/fisiología , Fenómenos Electrofisiológicos , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/fisiopatología , Ratas , Ratas Transgénicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA