Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 301
1.
Ann Neurol ; 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38845484

OBJECTIVE: The long-term consequences of traumatic brain injury (TBI) on brain structure remain uncertain. Given evidence that a single significant brain injury event increases the risk of dementia, brain-age estimation could provide a novel and efficient indexing of the long-term consequences of TBI. Brain-age procedures use predictive modeling to calculate brain-age scores for an individual using structural magnetic resonance imaging (MRI) data. Complicated mild, moderate, and severe TBI (cmsTBI) is associated with a higher predicted age difference (PAD), but the progression of PAD over time remains unclear. We sought to examine whether PAD increases as a function of time since injury (TSI) and if injury severity and sex interacted to influence this progression. METHODS: Through the ENIGMA Adult Moderate and Severe (AMS)-TBI working group, we examine the largest TBI sample to date (n = 343), along with controls, for a total sample size of n = 540, to replicate and extend prior findings in the study of TBI brain age. Cross-sectional T1w-MRI data were aggregated across 7 cohorts, and brain age was established using a similar brain age algorithm to prior work in TBI. RESULTS: Findings show that PAD widens with longer TSI, and there was evidence for differences between sexes in PAD, with men showing more advanced brain age. We did not find strong evidence supporting a link between PAD and cognitive performance. INTERPRETATION: This work provides evidence that changes in brain structure after cmsTBI are dynamic, with an initial period of change, followed by relative stability in brain morphometry, eventually leading to further changes in the decades after a single cmsTBI. ANN NEUROL 2024.

2.
Adv Sci (Weinh) ; : e2401648, 2024 Jun 14.
Article En | MEDLINE | ID: mdl-38874068

Efficient topical drug delivery remains a significant challenge in glaucoma management. Although nanoparticle formulations offer considerable promise, their complex preparation processes, co-delivery issues, and batch consistency have hindered their potential. A scalable fabrication strategy is developed here for preparing solid drug nanoparticles (SDNs) with enhanced drug delivery efficiency. Utilizing hydrophobic antiglaucoma drugs brimonidine (BM) and betaxolol (BX), uniform fixed combination BM/BX SDNs are fabricated through a continuous process, improving batch-to-batch consistency for combined glaucoma treatment. With trehalose being used as a lyoprotectant, BM/BX SDNs can be stored as dry powder and easily reconstituted in phosphate buffered saline. Importantly, reconstituted BM/BX SDNs form clear, homogenous solutions, and exhibit negligible cytotoxicity and irritation, making them well-suited for topical administration as eyedrops. Ex vivo and in vivo studies demonstrated that topically applied BM/BX SDNs permeate through the cornea significantly (about two fold to three fold) compared to their hydrophilic counterparts, i.e., brimonidine tartrate, and betaxolol hydrogen chloride. Notably, BM/BX SDNs displayed consistent intraocular pressure lowering effects in vivo in both normotensive rats and glaucoma mice. Collectively, this study demonstrates the potential of the scalable fabrication strategy and the resultant BM/BX SDNs for improving glaucoma management through eyedrops.

3.
Biophys J ; 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38898654

Covalent labeling of therapeutic drugs and proteins with polyethylene glycol (PEGylation) is an important modification for improving stability, solubility and half-life. PEGylation alters protein solution behavior through its impact on thermodynamic nonideality by increasing the excluded volume, and on hydrodynamic nonideality by increasing the frictional drag. To understand PEGylation's impact, we investigated the thermodynamic and hydrodynamic properties of a model system consisting of PEGylated human serum albumin (PEG-HSA) derivatives using analytical ultracentrifugation (AUC) and dynamic light scattering (DLS). We constructed PEG-HSA derivatives of single, linear 5K, 10K, 20K, 40K PEG chains and a single branched-chain PEG of 40K (2x20K). Sedimentation velocity (SV) experiments were analyzed using SEDANAL direct boundary fitting to extract ideal sedimentation coefficients so, hydrodynamic nonideality ks, and thermodynamic nonideality 2BM1SV terms. These quantities allow the determination of the Stokes radius Rs, the frictional ratio f/fo, and the swollen or entrained volume Vs/v, which measure size, shape, and solvent interaction. We performed sedimentation equilibrium experiments to obtain independent measurements of thermodynamic nonideality 2BM1SE. From DLS measurements we determined the interaction parameter, kD, the concentration dependence of the apparent diffusion coefficient, D, and from extrapolation of D to c = 0 a second estimate of Rs. Rs values derived from SV and DLS measurements and ensemble model calculations (see complementary study) are then used to show that ks + kD = theoretical 2B22M1. In contrast, experimental BM1 values from SV and SE data collectively allow for similar analysis for protein-PEG conjugates and show that ks + kD = 1.02-1.07∗BM1, rather than the widely used ks + kD = 2BM1 developed for hard spheres. The random coil behavior of PEG dominates the colloidal properties of PEG-protein conjugates and exceeds the sum of a random coil and hard-sphere volume due to excess entrained water.

4.
bioRxiv ; 2024 May 02.
Article En | MEDLINE | ID: mdl-38746189

Protein kinase R (PKR) functions in the eukaryotic innate immune system as a first-line defense against viral infections. PKR binds viral dsRNA, leading to autophosphorylation and activation. In its active state, PKR can phosphorylate its primary substrate, eIF2 α , which blocks initiation of translation in the infected cell. It has been established that PKR activation occurs when the kinase domain dimerizes in a back-to-back configuration. However, the mechanism by which dimerization leads to enzymatic activation is not fully understood. Here, we investigate the structural mechanistic basis and energy landscape for PKR activation, with a focus on the α C helix - a kinase activation and signal integration hub - using all-atom equilibrium and enhanced sampling molecular dynamics simulations. By employing window-exchange umbrella sampling, we compute free energy profiles of activation which show that back-to-back dimerization stabilizes a catalytically competent conformation of PKR. Key hydrophobic residues in the homodimer interface contribute to stabilization of the α C helix in an active conformation and the position of its glutamate residue. Using linear mutual information analysis, we analyze allosteric communication connecting the protomers' N-lobes and the α C helix dimer interface with the α C helix.

5.
Microbiol Resour Announc ; 13(4): e0106323, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38436268

The RDP Classifier is one of the most popular machine learning approaches for taxonomic classification due to its robustness and relatively high accuracy. Both the RDP taxonomy and RDP Classifier have been updated to incorporate newly described taxa and recent changes to prokaryotic nomenclature.

6.
Alzheimers Dement (Amst) ; 16(1): e12559, 2024.
Article En | MEDLINE | ID: mdl-38487076

INTRODUCTION: Overlooking the heterogeneity in Alzheimer's disease (AD) may lead to diagnostic delays and failures. Neuroanatomical normative modeling captures individual brain variation and may inform our understanding of individual differences in AD-related atrophy. METHODS: We applied neuroanatomical normative modeling to magnetic resonance imaging from a real-world clinical cohort with confirmed AD (n = 86). Regional cortical thickness was compared to a healthy reference cohort (n = 33,072) and the number of outlying regions was summed (total outlier count) and mapped at individual- and group-levels. RESULTS: The superior temporal sulcus contained the highest proportion of outliers (60%). Elsewhere, overlap between patient atrophy patterns was low. Mean total outlier count was higher in patients who were non-amnestic, at more advanced disease stages, and without depressive symptoms. Amyloid burden was negatively associated with outlier count. DISCUSSION: Brain atrophy in AD is highly heterogeneous and neuroanatomical normative modeling can be used to explore anatomo-clinical correlations in individual patients.

7.
Hum Brain Mapp ; 45(4): e26625, 2024 Mar.
Article En | MEDLINE | ID: mdl-38433665

Estimated age from brain MRI data has emerged as a promising biomarker of neurological health. However, the absence of large, diverse, and clinically representative training datasets, along with the complexity of managing heterogeneous MRI data, presents significant barriers to the development of accurate and generalisable models appropriate for clinical use. Here, we present a deep learning framework trained on routine clinical data (N up to 18,890, age range 18-96 years). We trained five separate models for accurate brain age prediction (all with mean absolute error ≤4.0 years, R2 ≥ .86) across five different MRI sequences (T2 -weighted, T2 -FLAIR, T1 -weighted, diffusion-weighted, and gradient-recalled echo T2 *-weighted). Our trained models offer dual functionality. First, they have the potential to be directly employed on clinical data. Second, they can be used as foundation models for further refinement to accommodate a range of other MRI sequences (and therefore a range of clinical scenarios which employ such sequences). This adaptation process, enabled by transfer learning, proved effective in our study across a range of MRI sequences and scan orientations, including those which differed considerably from the original training datasets. Crucially, our findings suggest that this approach remains viable even with limited data availability (as low as N = 25 for fine-tuning), thus broadening the application of brain age estimation to more diverse clinical contexts and patient populations. By making these models publicly available, we aim to provide the scientific community with a versatile toolkit, promoting further research in brain age prediction and related areas.


Brain , Mental Recall , Humans , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Child, Preschool , Brain/diagnostic imaging , Diffusion , Neuroimaging , Machine Learning
8.
Hum Brain Mapp ; 45(5): e26599, 2024 Apr.
Article En | MEDLINE | ID: mdl-38520360

While neurological manifestations are core features of Fabry disease (FD), quantitative neuroimaging biomarkers allowing to measure brain involvement are lacking. We used deep learning and the brain-age paradigm to assess whether FD patients' brains appear older than normal and to validate brain-predicted age difference (brain-PAD) as a possible disease severity biomarker. MRI scans of FD patients and healthy controls (HCs) from a single Institution were, retrospectively, studied. The Fabry stabilization index (FASTEX) was recorded as a measure of disease severity. Using minimally preprocessed 3D T1-weighted brain scans of healthy subjects from eight publicly available sources (N = 2160; mean age = 33 years [range 4-86]), we trained a model predicting chronological age based on a DenseNet architecture and used it to generate brain-age predictions in the internal cohort. Within a linear modeling framework, brain-PAD was tested for age/sex-adjusted associations with diagnostic group (FD vs. HC), FASTEX score, and both global and voxel-level neuroimaging measures. We studied 52 FD patients (40.6 ± 12.6 years; 28F) and 58 HC (38.4 ± 13.4 years; 28F). The brain-age model achieved accurate out-of-sample performance (mean absolute error = 4.01 years, R2 = .90). FD patients had significantly higher brain-PAD than HC (estimated marginal means: 3.1 vs. -0.1, p = .01). Brain-PAD was associated with FASTEX score (B = 0.10, p = .02), brain parenchymal fraction (B = -153.50, p = .001), white matter hyperintensities load (B = 0.85, p = .01), and tissue volume reduction throughout the brain. We demonstrated that FD patients' brains appear older than normal. Brain-PAD correlates with FD-related multi-organ damage and is influenced by both global brain volume and white matter hyperintensities, offering a comprehensive biomarker of (neurological) disease severity.


Deep Learning , Fabry Disease , Leukoaraiosis , Humans , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Fabry Disease/diagnostic imaging , Retrospective Studies , Brain/diagnostic imaging , Magnetic Resonance Imaging , Biomarkers
9.
Sleep ; 47(2)2024 Feb 08.
Article En | MEDLINE | ID: mdl-37889226

STUDY OBJECTIVES: To assess for associations between sleeping more than or less than recommended by the National Sleep Foundation (NSF), and self-reported insomnia, with brain structure. METHODS: Data from the UK Biobank cohort were analyzed (N between 9K and 32K, dependent on availability, aged 44 to 82 years). Sleep measures included self-reported adherence to NSF guidelines on sleep duration (sleeping between 7 and 9 hours per night), and self-reported difficulty falling or staying asleep (insomnia). Brain structural measures included global and regional cortical or subcortical morphometry (thickness, surface area, volume), global and tract-related white matter microstructure, brain age gap (difference between chronological age and age estimated from brain scan), and total volume of white matter lesions. RESULTS: Longer-than-recommended sleep duration was associated with lower overall grey and white matter volumes, lower global and regional cortical thickness and volume measures, higher brain age gap, higher volume of white matter lesions, higher mean diffusivity globally and in thalamic and association fibers, and lower volume of the hippocampus. Shorter-than-recommended sleep duration was related to higher global and cerebellar white matter volumes, lower global and regional cortical surface areas, and lower fractional anisotropy in projection fibers. Self-reported insomnia was associated with higher global gray and white matter volumes, and with higher volumes of the amygdala, hippocampus, and putamen. CONCLUSIONS: Sleeping longer than recommended by the NSF is associated with a wide range of differences in brain structure, potentially indicative of poorer brain health. Sleeping less than recommended is distinctly associated with lower cortical surface areas. Future studies should assess the potential mechanisms of these differences and investigate long sleep duration as a putative marker of brain health.


Sleep Initiation and Maintenance Disorders , White Matter , Humans , Sleep Initiation and Maintenance Disorders/epidemiology , Sleep Initiation and Maintenance Disorders/pathology , Sleep Duration , Biological Specimen Banks , UK Biobank , Brain/diagnostic imaging , Brain/pathology , White Matter/diagnostic imaging , White Matter/pathology , Magnetic Resonance Imaging , Gray Matter
10.
Exp Eye Res ; 238: 109723, 2024 01.
Article En | MEDLINE | ID: mdl-37979905

Aniridia is a panocular condition characterized by a partial or complete loss of the iris. It manifests various developmental deficits in both the anterior and posterior segments of the eye, leading to a progressive vision loss. The homeobox gene PAX6 plays an important role in ocular development and mutations of PAX6 have been the main causative factors for aniridia. In this study, we assessed how Pax6-haploinsufficiency affects retinal morphology and vision of Pax6Sey mice using in vivo and ex vivo metrics. We used mice of C57BL/6 and 129S1/Svlmj genetic backgrounds to examine the variable severity of symptoms as reflected in human aniridia patients. Elevated intraocular pressure (IOP) was observed in Pax6Sey mice starting from post-natal day 20 (P20). Correspondingly, visual acuity showed a steady age-dependent decline in Pax6Sey mice, though these phenotypes were less severe in the 129S1/Svlmj mice. Local retinal damage with layer disorganization was assessed at P30 and P80 in the Pax6Sey mice. Interestingly, we also observed a greater number of activated Iba1+ microglia and GFAP + astrocytes in the Pax6Sey mice than in littermate controls, suggesting a possible neuroinflammatory response to Pax6 deficiencies.


Aniridia , Microphthalmos , Humans , Mice , Animals , PAX6 Transcription Factor/genetics , Paired Box Transcription Factors/genetics , Neuroinflammatory Diseases , Mice, Inbred C57BL , Microphthalmos/genetics , Aniridia/genetics , Homeodomain Proteins/genetics , Eye Proteins/genetics
11.
Front Radiol ; 3: 1251825, 2023.
Article En | MEDLINE | ID: mdl-38089643

Unlocking the vast potential of deep learning-based computer vision classification systems necessitates large data sets for model training. Natural Language Processing (NLP)-involving automation of dataset labelling-represents a potential avenue to achieve this. However, many aspects of NLP for dataset labelling remain unvalidated. Expert radiologists manually labelled over 5,000 MRI head reports in order to develop a deep learning-based neuroradiology NLP report classifier. Our results demonstrate that binary labels (normal vs. abnormal) showed high rates of accuracy, even when only two MRI sequences (T2-weighted and those based on diffusion weighted imaging) were employed as opposed to all sequences in an examination. Meanwhile, the accuracy of more specific labelling for multiple disease categories was variable and dependent on the category. Finally, resultant model performance was shown to be dependent on the expertise of the original labeller, with worse performance seen with non-expert vs. expert labellers.

12.
Brain Res Bull ; 205: 110811, 2023 Dec.
Article En | MEDLINE | ID: mdl-37952679

An individual's brain predicted age minus chronological age (brain-PAD) obtained from MRIs could become a biomarker of disease in research studies. However, brain age reports from clinical MRIs are scant despite the rich clinical information hospitals provide. Since clinical MRI protocols are meant for specific clinical purposes, performance of brain age predictions on clinical data need to be tested. We explored the feasibility of using DeepBrainNet, a deep network previously trained on research-oriented MRIs, to predict the brain ages of 840 patients who visited 15 facilities of a health system in Florida. Anticipating a strong prediction bias in our clinical sample, we characterized it to propose a covariate model in group-level regressions of brain-PAD (recommended to avoid Type I, II errors), and tested its generalizability, a requirement for meaningful brain age predictions in new single clinical cases. The best bias-related covariate model was scanner-independent and linear in age, while the best method to estimate bias-free brain ages was the inverse of a scanner-independent and quadratic in brain age function. We demonstrated the feasibility to detect sex-related differences in brain-PAD using group-level regression accounting for the selected covariate model. These differences were preserved after bias correction. The Mean-Average Error (MAE) of the predictions in independent data was ∼8 years, 2-3 years greater than reports for research-oriented MRIs using DeepBrainNet, whereas an R2 (assuming no bias) was 0.33 and 0.76 for the uncorrected and corrected brain ages, respectively. DeepBrainNet on clinical populations seems feasible, but more accurate algorithms or transfer-learning retraining is needed.


Brain , Magnetic Resonance Imaging , Humans , Feasibility Studies , Brain/diagnostic imaging , Algorithms
13.
Sci Rep ; 13(1): 19570, 2023 11 10.
Article En | MEDLINE | ID: mdl-37950024

The difference between the estimated brain age and the chronological age ('brain-PAD') could become a clinical biomarker. However, most brain age models were developed for research-grade high-resolution T1-weighted MRIs, limiting their applicability to clinical-grade MRIs from various protocols. We adopted a dual-transfer learning strategy to develop a model agnostic to modality, resolution, or slice orientation. We retrained a convolutional neural network (CNN) using 6281 clinical MRIs from 1559 patients, among 7 modalities and 8 scanner models. The CNN was trained to estimate brain age from synthetic research-grade magnetization-prepared rapid gradient-echo MRIs (MPRAGEs) generated by a 'super-resolution' method. The model failed with T2-weighted Gradient-Echo MRIs. The mean absolute error (MAE) was 5.86-8.59 years across the other modalities, still higher than for research-grade MRIs, but comparable between actual and synthetic MPRAGEs for some modalities. We modeled the "regression bias" in brain age, for its correction is crucial for providing unbiased summary statistics of brain age or for personalized brain age-based biomarkers. The bias model was generalizable as its correction eliminated any correlation between brain-PAD and chronological age in new samples. Brain-PAD was reliable across modalities. We demonstrate the feasibility of brain age predictions from arbitrary clinical-grade MRIs, thereby contributing to personalized medicine.


Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Brain/diagnostic imaging
14.
Eur Radiol ; 2023 Nov 14.
Article En | MEDLINE | ID: mdl-37957363

OBJECTIVES: Dramatic brain morphological changes occur throughout the third trimester of gestation. In this study, we investigated whether the predicted brain age (PBA) derived from graph convolutional network (GCN) that accounts for cortical morphometrics in third trimester is associated with postnatal abnormalities and neurodevelopmental outcome. METHODS: In total, 577 T1 MRI scans of preterm neonates from two different datasets were analyzed; the NEOCIVET pipeline generated cortical surfaces and morphological features, which were then fed to the GCN to predict brain age. The brain age index (BAI; PBA minus chronological age) was used to determine the relationships among preterm birth (i.e., birthweight and birth age), perinatal brain injuries, postnatal events/clinical conditions, BAI at postnatal scan, and neurodevelopmental scores at 30 months. RESULTS: Brain morphology and GCN-based age prediction of preterm neonates without brain lesions (mean absolute error [MAE]: 0.96 weeks) outperformed conventional machine learning methods using no topological information. Structural equation models (SEM) showed that BAI mediated the influence of preterm birth and postnatal clinical factors, but not perinatal brain injuries, on neurodevelopmental outcome at 30 months of age. CONCLUSIONS: Brain morphology may be clinically meaningful in measuring brain age, as it relates to postnatal factors, and predicting neurodevelopmental outcome. CLINICAL RELEVANCE STATEMENT: Understanding the neurodevelopmental trajectory of preterm neonates through the prediction of brain age using a graph convolutional neural network may allow for earlier detection of potential developmental abnormalities and improved interventions, consequently enhancing the prognosis and quality of life in this vulnerable population. KEY POINTS: •Brain age in preterm neonates predicted using a graph convolutional network with brain morphological changes mediates the pre-scan risk factors and post-scan neurodevelopmental outcomes. •Predicted brain age oriented from conventional deep learning approaches, which indicates the neurodevelopmental status in neonates, shows a lack of sensitivity to perinatal risk factors and predicting neurodevelopmental outcomes. •The new brain age index based on brain morphology and graph convolutional network enhances the accuracy and clinical interpretation of predicted brain age for neonates.

15.
Vet Med Sci ; 9(6): 2586-2593, 2023 Nov.
Article En | MEDLINE | ID: mdl-37817443

OBJECTIVE: To evaluate the performance of automated staple sizes on a cadaveric canine partial gastrectomy model. METHODS: Stomachs were transected through the gastric body axis and randomly allocated to two closure groups: Group B, thoracoabdominal (TA) stapler 3.5 mm staple cartridge (blue); Group G, TA stapler 4.8 mm staple cartridge (green). After construct completion, leak testing was performed for both groups and compared. Initial leakage pressure (ILP), maximal leakage pressure (MLP) and leakage location were recorded. Staple lines were evaluated by direct observation and fluoroscopy to assess sub-mucosal layer incorporation and staple conformation. Staple shape was classified as optimal or suboptimal. Significance was set at p less than 0.5. RESULTS: Following gastrectomy, the mean double gastric wall thickness was 7.82 ± 2.05 mm at the gastric body. Mean ILP was significantly lower in groups G (17.13 ± 1.19 mmHg) compared to group B (50.46 ± 6.03 mmHg, p = 0.0013). Similarly, mean MLP was significantly lower in group G (21.41 ± 1.39 mmHg) compared to group B (64.61 ± 10.21 mmHg, p < 0.0001). Although group G had higher percentage of B-shaped staple formation compared to group B, this was not significant (group G; 92.38%, group B; 54.56%; p = 0.054). CONCLUSION: The 3.5 mm TA staple cartridge (blue) achieved superior bursting pressures compared with the 4.8 mm TA staple cartridge (blue) for the closure of a canine partial gastrectomy model. Both staple sizes incorporated all gastric layers. No differences were noticed in optimal staple conformation between groups. In vivo investigation is warranted to evaluate the use of different staple sizes on gastric tissue perfusion, successful healing and post-operative stasis and dehiscence.


Gastrectomy , Surgical Stapling , Animals , Dogs , Surgical Stapling/veterinary , Gastrectomy/veterinary , Stomach/surgery , Wound Healing
16.
iScience ; 26(9): 107679, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37680475

Clinical and neuroscientific studies suggest a link between psychological stress and reduced brain health in health and neurological disease but it is unclear whether mediating pathways are similar. Consequently, we applied an arterial-spin-labeling MRI stress task in 42 healthy persons and 56 with multiple sclerosis, and investigated regional neural stress responses, associations between functional connectivity of stress-responsive regions and the brain-age prediction error, a highly sensitive machine learning brain health biomarker, and regional brain-age constituents in both groups. Stress responsivity did not differ between groups. Although elevated brain-age prediction errors indicated worse brain health in patients, anterior insula-occipital cortex (healthy persons: occipital pole; patients: fusiform gyrus) functional connectivity correlated with brain-age prediction errors in both groups. Finally, also gray matter contributed similarly to regional brain-age across groups. These findings might suggest a common stress-brain health pathway whose impact is amplified in multiple sclerosis by disease-specific vulnerability factors.

17.
Res Sq ; 2023 Aug 11.
Article En | MEDLINE | ID: mdl-37609150

The predicted brain age minus the chronological age ('brain-PAD') could become a clinical biomarker. However, most brain age methods were developed to use research-grade high-resolution T1-weighted MRIs, limiting their applicability to clinical-grade MRIs from multiple protocols. To overcome this, we adopted a double transfer learning approach to develop a brain age model agnostic to modality, resolution, or slice orientation. Using 6,224 clinical MRIs among 7 modalities, scanned from 1,540 patients using 8 scanners among 15 + facilities of the University of Florida's Health System, we retrained a convolutional neural network (CNN) to predict brain age from synthetic research-grade magnetization-prepared rapid gradient-echo MRIs (MPRAGEs) generated by a deep learning-trained 'super-resolution' method. We also modeled the "regression dilution bias", a typical overestimation of younger ages and underestimation of older ages, which correction is paramount for personalized brain age-based biomarkers. This bias was independent of modality or scanner and generalizable to new samples, allowing us to add a bias-correction layer to the CNN. The mean absolute error in test samples was 4.67-6.47 years across modalities, with similar accuracy between original MPRAGEs and their synthetic counterparts. Brain-PAD was also reliable across modalities. We demonstrate the feasibility of clinical-grade brain age predictions, contributing to personalized medicine.

18.
BMJ Ment Health ; 26(1)2023 Jul.
Article En | MEDLINE | ID: mdl-37603383

BACKGROUND: Current dementia risk scores have had limited success in consistently identifying at-risk individuals across different ages and geographical locations. OBJECTIVE: We aimed to develop and validate a novel dementia risk score for a midlife UK population, using two cohorts: the UK Biobank, and UK Whitehall II study. METHODS: We divided the UK Biobank cohort into a training (n=176 611, 80%) and test sample (n=44 151, 20%) and used the Whitehall II cohort (n=2934) for external validation. We used the Cox LASSO regression to select the strongest predictors of incident dementia from 28 candidate predictors and then developed the risk score using competing risk regression. FINDINGS: Our risk score, termed the UK Biobank Dementia Risk Score (UKBDRS), consisted of age, education, parental history of dementia, material deprivation, a history of diabetes, stroke, depression, hypertension, high cholesterol, household occupancy, and sex. The score had a strong discrimination accuracy in the UK Biobank test sample (area under the curve (AUC) 0.8, 95% CI 0.78 to 0.82) and in the Whitehall cohort (AUC 0.77, 95% CI 0.72 to 0.81). The UKBDRS also significantly outperformed three other widely used dementia risk scores originally developed in cohorts in Australia (the Australian National University Alzheimer's Disease Risk Index), Finland (the Cardiovascular Risk Factors, Ageing, and Dementia score), and the UK (Dementia Risk Score). CLINICAL IMPLICATIONS: Our risk score represents an easy-to-use tool to identify individuals at risk for dementia in the UK. Further research is required to determine the validity of this score in other populations.


Biological Specimen Banks , Dementia , Humans , Australia , Risk Factors , Dementia/diagnosis , United Kingdom/epidemiology
19.
medRxiv ; 2023 Jun 16.
Article En | MEDLINE | ID: mdl-37398392

INTRODUCTION: Neuroanatomical normative modelling can capture individual variability in Alzheimer's Disease (AD). We used neuroanatomical normative modelling to track individuals' disease progression in people with mild cognitive impairment (MCI) and patients with AD. METHODS: Cortical thickness and subcortical volume neuroanatomical normative models were generated using healthy controls (n~58k). These models were used to calculate regional Z-scores in 4361 T1-weighted MRI time-series scans. Regions with Z-scores <-1.96 were classified as outliers and mapped on the brain, and also summarised by total outlier count (tOC). RESULTS: Rate of change in tOC increased in AD and in people with MCI who converted to AD and correlated with multiple non-imaging markers. Moreover, a higher annual rate of change in tOC increased the risk of MCI progression to AD. Brain Z-score maps showed that the hippocampus had the highest rate of atrophy change. CONCLUSIONS: Individual-level atrophy rates can be tracked by using regional outlier maps and tOC.

20.
Aging Brain ; 4: 100088, 2023.
Article En | MEDLINE | ID: mdl-37519450

Knee pain, the most common cause of musculoskeletal pain (MSK), constitutes a severe public health burden. Its neurobiological causes, however, remain poorly understood. Among many possible causes, it has been proposed that sleep problems could lead to an increase in chronic pain symptomatology, which may be driven by central nervous system changes. In fact, we previously found that brain cortical thickness mediated the relationship between sleep qualities and pain severity in older adults with MSK. We also demonstrated a significant difference in a machine-learning-derived brain-aging biomarker between participants with low-and high-impact knee pain. Considering this, we examined whether brain aging was associated with self-reported sleep and pain measures, and whether brain aging mediated the relationship between sleep problems and knee pain. Exploratory Spearman and Pearson partial correlations, controlling for age, sex, race and study site, showed a significant association of brain aging with sleep related impairment and self-reported pain measures. Moreover, mediation analysis showed that brain aging significantly mediated the effect of sleep related impairment on clinical pain and physical symptoms. Our findings extend our prior work demonstrating advanced brain aging among individuals with chronic pain and the mediating role of brain-aging on the association between sleep and pain severity. Future longitudinal studies are needed to further understand whether the brain can be a therapeutic target to reverse the possible effect of sleep problems on chronic pain.

...