Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 45
1.
bioRxiv ; 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38405833

The intricate molecular environment of the native membrane profoundly influences every aspect of membrane protein (MP) biology. Despite this, the most prevalent method of studying MPs uses detergent-like molecules that disrupt and remove this vital local membrane context. This severely impedes our ability to quantitatively decipher the local molecular context and comprehend its regulatory role in the structure, function, and biogenesis of MPs. Using a library of membrane-active polymers we have developed a platform for the high-throughput analysis of the membrane proteome. The platform enables near-complete spatially resolved extraction of target MPs directly from their endogenous membranes into native nanodiscs that maintain the local membrane context. We accompany this advancement with an open-access quantitative database that provides the most efficient extraction conditions of 2065 unique mammalian MPs. Our method enables rapid and near-complete extraction and purification of target MPs directly from their endogenous organellar membranes at physiological expression levels while maintaining the nanoscale local membrane environment. Going beyond the plasma membrane proteome, our platform enables extraction from any target organellar membrane including the endoplasmic reticulum, mitochondria, lysosome, Golgi, and even transient organelles such as the autophagosome. To further validate this platform we took several independent MPs and demonstrated how our resource can enable rapid extraction and purification of target MPs from different organellar membranes with high efficiency and purity. Further, taking two synaptic vesicle MPs, we show how the database can be extended to capture multiprotein complexes between overexpressed MPs. We expect these publicly available resources to empower researchers across disciplines to capture membrane 'nano-scoops' containing a target MP efficiently and interface with structural, functional, and other bioanalytical approaches. We demonstrate an example of this by combining our extraction platform with single-molecule TIRF imaging to demonstrate how it can enable rapid determination of homo-oligomeric states of target MPs in native cell membranes.

2.
Proc Natl Acad Sci U S A ; 120(45): e2311484120, 2023 Nov 07.
Article En | MEDLINE | ID: mdl-37903271

The synaptic vesicle protein Synaptophysin (Syp) has long been known to form a complex with the Vesicle associated soluble N-ethylmaleimide sensitive fusion protein attachment receptor (v-SNARE) Vesicle associated membrane protein (VAMP), but a more specific molecular function or mechanism of action in exocytosis has been lacking because gene knockouts have minimal effects. Utilizing fully defined reconstitution and single-molecule measurements, we now report that Syp functions as a chaperone that determines the number of SNAREpins assembling between a ready-release vesicle and its target membrane bilayer. Specifically, Syp directs the assembly of 12 ± 1 SNAREpins under each docked vesicle, even in the face of an excess of SNARE proteins. The SNAREpins assemble in successive waves of 6 ± 1 and 5 ± 2 SNAREpins, respectively, tightly linked to oligomerization of and binding to the vesicle Ca++ sensor Synaptotagmin. Templating of 12 SNAREpins by Syp is likely the direct result of its hexamer structure and its binding of VAMP2 dimers, both of which we demonstrate in detergent extracts and lipid bilayers.


Membrane Fusion , Synaptic Vesicles , Synaptophysin/genetics , Synaptophysin/metabolism , Membrane Fusion/physiology , Synaptic Vesicles/metabolism , Synaptotagmins/metabolism , SNARE Proteins/metabolism , Exocytosis/physiology
3.
Proc Natl Acad Sci U S A ; 120(44): e2306086120, 2023 Oct 31.
Article En | MEDLINE | ID: mdl-37883433

Munc13-1 is essential for vesicle docking and fusion at the active zone of synapses. Here, we report that Munc13-1 self-assembles into molecular clusters within diacylglycerol-rich microdomains present in phospholipid bilayers. Although the copy number of Munc13-1 molecules in these clusters has a broad distribution, a systematic Poisson analysis shows that this is most likely the result of two molecular species: monomers and mainly hexameric oligomers. Each oligomer is able to capture one vesicle independently. Hexamers have also been observed in crystals of Munc13-1 that form between opposed phospholipid bilayers [K. Grushin, R. V. Kalyana Sundaram, C. V. Sindelar, J. E. Rothman, Proc. Natl. Acad. Sci. U.S.A. 119, e2121259119 (2022)]. Mutations targeting the contacts stabilizing the crystallographic hexagons also disrupt the isolated hexamers, suggesting they are identical. Additionally, these mutations also convert vesicle binding from a cooperative to progressive mode. Our study provides an independent approach showing that Munc13-1 can form mainly hexamers on lipid bilayers each capable of vesicle capture.


Diglycerides , SNARE Proteins , SNARE Proteins/metabolism , Diglycerides/metabolism , Synapses/metabolism , Molecular Chaperones/metabolism , Phospholipids/metabolism
4.
Proc Natl Acad Sci U S A ; 120(34): e2309516120, 2023 08 22.
Article En | MEDLINE | ID: mdl-37590407

Here, we introduce the full functional reconstitution of genetically validated core protein machinery (SNAREs, Munc13, Munc18, Synaptotagmin, and Complexin) for synaptic vesicle priming and release in a geometry that enables detailed characterization of the fate of docked vesicles both before and after release is triggered with Ca2+. Using this setup, we identify new roles for diacylglycerol (DAG) in regulating vesicle priming and Ca2+-triggered release involving the SNARE assembly chaperone Munc13. We find that low concentrations of DAG profoundly accelerate the rate of Ca2+-dependent release, and high concentrations reduce clamping and permit extensive spontaneous release. As expected, DAG also increases the number of docked, release-ready vesicles. Dynamic single-molecule imaging of Complexin binding to release-ready vesicles directly establishes that DAG accelerates the rate of SNAREpin assembly mediated by chaperones, Munc13 and Munc18. The selective effects of physiologically validated mutations confirmed that the Munc18-Syntaxin-VAMP2 "template" complex is a functional intermediate in the production of primed, release-ready vesicles, which requires the coordinated action of Munc13 and Munc18.


Diglycerides , Synaptic Vesicles , Humans , Exocytosis , Synaptic Transmission , Synaptotagmins , Blister
5.
bioRxiv ; 2023 Jul 16.
Article En | MEDLINE | ID: mdl-37503179

The critical presynaptic protein Munc13 serves numerous roles in the process of docking and priming synaptic vesicles. Here we investigate the functional significance of two distinct oligomers of the Munc13 core domain (Munc13C) comprising C1-C2B-MUN-C2C. Oligomer interface point mutations that specifically destabilized either the trimer or lateral hexamer assemblies of Munc13C disrupted vesicle docking, trans-SNARE formation, and Ca 2+ -triggered vesicle fusion in vitro and impaired neurotransmitter secretion and motor nervous system function in vivo. We suggest that a progression of oligomeric Munc13 complexes couples vesicle docking and assembly of a precise number of SNARE molecules to support rapid and high-fidelity vesicle priming.

6.
bioRxiv ; 2023 Jul 06.
Article En | MEDLINE | ID: mdl-37461465

The synaptic vesicle protein Synaptophysin has long been known to form a complex with the v-SNARE VAMP, but a more specific molecular function or mechanism of action in exocytosis has been lacking because gene knockouts have minimal effects. Utilizing fully-defined reconstitution and single-molecule measurements, we now report that Synaptophysin functions as a chaperone that determines the number of SNAREpins assembling between a ready-release vesicle and its target membrane bilayer. Specifically, Synaptophysin directs the assembly of 12 ± 1 SNAREpins under each docked vesicle, even in the face of an excess of SNARE proteins. The SNAREpins assemble in successive waves of 6 ± 1 and 5 ± 2 SNAREpins, respectively, tightly linked to oligomerization of and binding to the vesicle Ca++ sensor Synaptotagmin. Templating of 12 SNAREpins by Synaptophysin is likely the direct result of its hexamer structure and its binding of VAMP2 dimers, both of which we demonstrate in detergent extracts and lipid bilayers.

7.
Cell Calcium ; 113: 102766, 2023 07.
Article En | MEDLINE | ID: mdl-37295201

High-throughput quantification of the first- and second-phase insulin secretion dynamics is intractable with current methods. The fact that independent secretion phases play distinct roles in metabolism necessitates partitioning them separately and performing high-throughput compound screening to target them individually. We developed an insulin-nanoluc luciferase reporter system to dissect the molecular and cellular pathways involved in the separate phases of insulin secretion. We validated this method through genetic studies, including knockdown and overexpression, as well as small-molecule screening and their effects on insulin secretion. Furthermore, we demonstrated that the results of this method are well correlated with those of single-vesicle exocytosis experiments conducted on live cells, providing a quantitative reference for the approach. Thus, we have developed a robust methodology for screening small molecules and cellular pathways that target specific phases of insulin secretion, resulting in a better understanding of insulin secretion, which in turn will result in a more effective insulin therapy through the stimulation of endogenous glucose-stimulated insulin secretion.


Insulin-Secreting Cells , Islets of Langerhans , Insulin/pharmacology , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Exocytosis/physiology , Glucose/metabolism , Islets of Langerhans/metabolism
8.
bioRxiv ; 2023 Jun 07.
Article En | MEDLINE | ID: mdl-37333317

Here we introduce the full functional reconstitution of genetically-validated core protein machinery (SNAREs, Munc13, Munc18, Synaptotagmin, Complexin) for synaptic vesicle priming and release in a geometry that enables detailed characterization of the fate of docked vesicles both before and after release is triggered with Ca 2+ . Using this novel setup, we discover new roles for diacylglycerol (DAG) in regulating vesicle priming and Ca 2+- triggered release involving the SNARE assembly chaperone Munc13. We find that low concentrations of DAG profoundly accelerate the rate of Ca 2+ -dependent release, and high concentrations reduce clamping and permit extensive spontaneous release. As expected, DAG also increases the number of ready-release vesicles. Dynamic single-molecule imaging of Complexin binding to ready-release vesicles directly establishes that DAG accelerates the rate of SNAREpin assembly mediated by Munc13 and Munc18 chaperones. The selective effects of physiologically validated mutations confirmed that the Munc18-Syntaxin-VAMP2 'template' complex is a functional intermediate in the production of primed, ready-release vesicles, which requires the coordinated action of Munc13 and Munc18. SIGNIFICANCE STATEMENT: Munc13 and Munc18 are SNARE-associated chaperones that act as "priming" factors, facilitating the formation of a pool of docked, release-ready vesicles and regulating Ca 2+ -evoked neurotransmitter release. Although important insights into Munc18/Munc13 function have been gained, how they assemble and operate together remains enigmatic. To address this, we developed a novel biochemically-defined fusion assay which enabled us to investigate the cooperative action of Munc13 and Munc18 in molecular terms. We find that Munc18 nucleates the SNARE complex, while Munc13 promotes and accelerates the SNARE assembly in a DAG-dependent manner. The concerted action of Munc13 and Munc18 stages the SNARE assembly process to ensure efficient 'clamping' and formation of stably docked vesicles, which can be triggered to fuse rapidly (∼10 msec) upon Ca 2+ influx.

9.
Nat Methods ; 20(6): 891-897, 2023 Jun.
Article En | MEDLINE | ID: mdl-37106230

Hierarchical organization of integral membrane proteins (IMP) and lipids at the membrane is essential for regulating myriad downstream signaling. A quantitative understanding of these processes requires both detections of oligomeric organization of IMPs and lipids directly from intact membranes and determination of key membrane components and properties that regulate them. Addressing this, we have developed a platform that enables native mass spectrometry (nMS) analysis of IMP-lipid complexes directly from intact and customizable lipid membranes. Both the lipid composition and membrane properties (such as curvature, tension, and fluidity) of these bilayers can be precisely customized to a target membrane. Subsequent direct nMS analysis of these intact proteolipid vesicles can yield the oligomeric states of the embedded IMPs, identify bound lipids, and determine the membrane properties that can regulate the observed IMP-lipid organization. Applying this method, we show how lipid binding regulates neurotransmitter release and how membrane composition regulates the functional oligomeric state of a transporter.


Lipids , Membrane Proteins , Mass Spectrometry/methods , Biological Transport , Lipids/chemistry , Membrane Proteins/chemistry , Lipid Bilayers/chemistry
10.
Small ; 18(51): e2205567, 2022 12.
Article En | MEDLINE | ID: mdl-36328714

Cellular plasma membranes, in their role as gatekeepers to the external environment, host numerous protein assemblies and lipid domains that manage the movement of molecules into and out of cells, regulate electric potential, and direct cell signaling. The ability to investigate these roles on the bilayer at a single-molecule level in a controlled, in vitro environment while preserving lipid and protein architectures will provide deeper insights into how the plasma membrane works. A tunable silicon microarray platform that supports stable, planar, and asymmetric suspended lipid membranes (SLIM) using synthetic and native plasma membrane vesicles for single-molecule fluorescence investigations is developed. Essentially, a "plasma membrane-on-a-chip" system that preserves lipid asymmetry and protein orientation is created. By harnessing the combined potential of this platform with total internal reflection fluorescence (TIRF) microscopy, the authors are able to visualize protein complexes with single-molecule precision. This technology has widespread applications in biological processes that happen at the cellular membranes and will further the knowledge of lipid and protein assemblies.


Lipid Bilayers , Membrane Proteins , Lipid Bilayers/metabolism , Cell Membrane/metabolism , Membranes , Membrane Proteins/metabolism , Lab-On-A-Chip Devices
11.
Elife ; 112022 04 20.
Article En | MEDLINE | ID: mdl-35442188

Previously we reported that Synaptotagmin-1 and Complexin synergistically clamp the SNARE assembly process to generate and maintain a pool of docked vesicles that fuse rapidly and synchronously upon Ca2+ influx (Ramakrishnan et al., 2020). Here, using the same in vitro single-vesicle fusion assay, we determine the molecular details of the Complexin-mediated fusion clamp and its role in Ca2+-activation. We find that a delay in fusion kinetics, likely imparted by Synaptotagmin-1, is needed for Complexin to block fusion. Systematic truncation/mutational analyses reveal that continuous alpha-helical accessory-central domains of Complexin are essential for its inhibitory function and specific interaction of the accessory helix with the SNAREpins enhances this functionality. The C-terminal domain promotes clamping by locally elevating Complexin concentration through interactions with the membrane. Independent of their clamping functions, the accessory-central helical domains of Complexin also contribute to rapid Ca2+-synchronized vesicle release by increasing the probability of fusion from the clamped state.


Adaptor Proteins, Vesicular Transport , Synaptic Vesicles , Adaptor Proteins, Vesicular Transport/chemistry , Calcium/pharmacology , Constriction , Membrane Fusion , Nerve Tissue Proteins/chemistry , SNARE Proteins
12.
FEBS Lett ; 595(17): 2185-2196, 2021 09.
Article En | MEDLINE | ID: mdl-34227103

Munc13-1 is a large banana-shaped soluble protein that is involved in the regulation of synaptic vesicle docking and fusion. Recent studies suggest that multiple copies of Munc13-1 form nano-assemblies in active zones of neurons. However, it is not known whether such clustering of Munc13-1 is correlated with multivalent binding to synaptic vesicles or specific plasma membrane domains at docking sites in the active zone. The functional significance of putative Munc13-1 clustering is also unknown. Here, we report that nano-clustering is an inherent property of Munc13-1 and is indeed required for vesicle binding to bilayers containing Munc13-1. Purified Munc13-1 protein reconstituted onto supported lipid bilayers assembled into clusters containing from 2 to ˜ 20 copies as revealed by a combination of quantitative TIRF microscopy and step-wise photobleaching. Surprisingly, only clusters containing a minimum of 6 copies of Munc13-1 were capable of efficiently capturing and retaining small unilamellar vesicles. The C-terminal C2 C domain of Munc13-1 is not required for Munc13-1 clustering, but is required for efficient vesicle capture. This capture is largely due to a combination of electrostatic and hydrophobic interactions between the C2 C domain and the vesicle membrane.


Cell Membrane/metabolism , Nerve Tissue Proteins/metabolism , Cell Membrane/chemistry , HEK293 Cells , Humans , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Protein Domains , Synaptic Vesicles/metabolism
13.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Article En | MEDLINE | ID: mdl-33495324

Vesicle fusion with a target membrane is a key event in cellular trafficking and ensures cargo transport within the cell and between cells. The formation of a protein complex, called SNAREpin, provides the energy necessary for the fusion process. In a three-dimensional microfluidic chip, we monitored the fusion of small vesicles with a suspended asymmetric lipid bilayer. Adding ion channels into the vesicles, our setup allows the observation of a single fusion event by electrophysiology with 10-µs precision. Intriguingly, we identified that small transient fusion pores of discrete sizes reversibly opened with a characteristic lifetime of ∼350 ms. The distribution of their apparent diameters displayed two peaks, at 0.4 ± 0.1 nm and 0.8 ± 0.2 nm. Varying the number of SNAREpins, we demonstrated that the first peak corresponds to fusion pores induced by a single SNAREpin and the second peak is associated with pores involving two SNAREpins acting simultaneously. The pore size fluctuations provide a direct estimate of the energy landscape of the pore. By extrapolation, the energy landscape for three SNAREpins does not exhibit any thermally significant energy barrier, showing that pores larger than 1.5 nm are spontaneously produced by three or more SNAREpins acting simultaneously, and expand indefinitely. Our results quantitatively explain why one SNAREpin is sufficient to open a fusion pore and more than three SNAREpins are required for cargo release. Finally, they also explain why a machinery that synchronizes three SNAREpins, or more, is mandatory to ensure fast neurotransmitter release during synaptic transmission.


Membrane Fusion , SNARE Proteins/metabolism , Energy Metabolism
14.
FEBS Lett ; 595(3): 297-309, 2021 02.
Article En | MEDLINE | ID: mdl-33222163

Synaptic vesicle fusion is mediated by SNARE proteins-VAMP2 on the vesicle and Syntaxin-1/SNAP25 on the presynaptic membrane. Chaperones Munc18-1 and Munc13-1 cooperatively catalyze SNARE assembly via an intermediate 'template' complex containing Syntaxin-1 and VAMP2. How SNAP25 enters this reaction remains a mystery. Here, we report that Munc13-1 recruits SNAP25 to initiate the ternary SNARE complex assembly by direct binding, as judged by bulk FRET spectroscopy and single-molecule optical tweezer studies. Detailed structure-function analyses show that the binding is mediated by the Munc13-1 MUN domain and is specific for the SNAP25 'linker' region that connects the two SNARE motifs. Consequently, freely diffusing SNAP25 molecules on phospholipid bilayers are concentrated and bound in ~ 1 : 1 stoichiometry by the self-assembled Munc13-1 nanoclusters.


Liposomes/metabolism , Nerve Tissue Proteins/metabolism , Synaptosomal-Associated Protein 25/metabolism , Syntaxin 1/metabolism , Vesicle-Associated Membrane Protein 2/metabolism , Animals , Binding Sites , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Liposomes/chemistry , Mice , Models, Molecular , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Optical Tweezers , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Phosphatidylethanolamines/chemistry , Phosphatidylethanolamines/metabolism , Phosphatidylserines/chemistry , Phosphatidylserines/metabolism , Polyethylene Glycols/chemistry , Polyethylene Glycols/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Synaptosomal-Associated Protein 25/chemistry , Synaptosomal-Associated Protein 25/genetics , Syntaxin 1/chemistry , Syntaxin 1/genetics , Vesicle-Associated Membrane Protein 2/chemistry , Vesicle-Associated Membrane Protein 2/genetics
15.
Sci Rep ; 10(1): 18011, 2020 10 22.
Article En | MEDLINE | ID: mdl-33093513

Synaptotagmin interaction with anionic lipid (phosphatidylserine/phosphatidylinositol) containing membranes, both in the absence and presence of calcium ions (Ca2+), is critical to its central role in orchestrating neurotransmitter release. The molecular surfaces involved, namely the conserved polylysine motif in the C2B domain and Ca2+-binding aliphatic loops on both C2A and C2B domains, are known. Here we use surface force apparatus combined with systematic mutational analysis of the functional surfaces to directly measure Syt1-membrane interaction and fully map the site-binding energetics of Syt1 both in the absence and presence of Ca2+. By correlating energetics data with the molecular rearrangements measured during confinement, we find that both C2 domains cooperate in membrane binding, with the C2B domain functioning as the main energetic driver, and the C2A domain acting as a facilitator.

16.
Elife ; 92020 05 13.
Article En | MEDLINE | ID: mdl-32401194

Calcium (Ca2+)-evoked release of neurotransmitters from synaptic vesicles requires mechanisms both to prevent un-initiated fusion of vesicles (clamping) and to trigger fusion following Ca2+-influx. The principal components involved in these processes are the vesicular fusion machinery (SNARE proteins) and the regulatory proteins, Synaptotagmin-1 and Complexin. Here, we use a reconstituted single-vesicle fusion assay under physiologically-relevant conditions to delineate a novel mechanism by which Synaptotagmin-1 and Complexin act synergistically to establish Ca2+-regulated fusion. We find that under each vesicle, Synaptotagmin-1 oligomers bind and clamp a limited number of 'central' SNARE complexes via the primary interface and introduce a kinetic delay in vesicle fusion mediated by the excess of free SNAREpins. This in turn enables Complexin to arrest the remaining free 'peripheral' SNAREpins to produce a stably clamped vesicle. Activation of the central SNAREpins associated with Synaptotagmin-1 by Ca2+ is sufficient to trigger rapid (<100 msec) and synchronous fusion of the docked vesicles.


Adaptor Proteins, Vesicular Transport/metabolism , Calcium Signaling , Calcium/metabolism , Exocytosis , Nerve Tissue Proteins/metabolism , Synaptic Vesicles/metabolism , Synaptotagmin I/metabolism , Adaptor Proteins, Vesicular Transport/genetics , Animals , Humans , Kinetics , Liposomes , Membrane Fusion , Mice , Mutation , Nerve Tissue Proteins/genetics , Rats , SNARE Proteins/genetics , SNARE Proteins/metabolism , Synaptotagmin I/genetics , Vesicle-Associated Membrane Protein 2/genetics , Vesicle-Associated Membrane Protein 2/metabolism
17.
Proc Natl Acad Sci U S A ; 117(7): 3819-3827, 2020 02 18.
Article En | MEDLINE | ID: mdl-32015138

Synaptotagmin 1 (Syt1) synchronizes neurotransmitter release to action potentials (APs) acting as the fast Ca2+ release sensor and as the inhibitor (clamp) of spontaneous and delayed asynchronous release. While the Syt1 Ca2+ activation mechanism has been well-characterized, how Syt1 clamps transmitter release remains enigmatic. Here we show that C2B domain-dependent oligomerization provides the molecular basis for the Syt1 clamping function. This follows from the investigation of a designed mutation (F349A), which selectively destabilizes Syt1 oligomerization. Using a combination of fluorescence imaging and electrophysiology in neocortical synapses, we show that Syt1F349A is more efficient than wild-type Syt1 (Syt1WT) in triggering synchronous transmitter release but fails to clamp spontaneous and synaptotagmin 7 (Syt7)-mediated asynchronous release components both in rescue (Syt1-/- knockout background) and dominant-interference (Syt1+/+ background) conditions. Thus, we conclude that Ca2+-sensitive Syt1 oligomers, acting as an exocytosis clamp, are critical for maintaining the balance among the different modes of neurotransmitter release.


Neurotransmitter Agents/metabolism , Synaptotagmin I/metabolism , Animals , Exocytosis , Mice , Mice, Knockout , Mutation, Missense , Synapses/metabolism , Synaptic Transmission , Synaptotagmin I/genetics
18.
Nat Commun ; 10(1): 2413, 2019 06 03.
Article En | MEDLINE | ID: mdl-31160571

Synapotagmin-1 (Syt1) interacts with both SNARE proteins and lipid membranes to synchronize neurotransmitter release to calcium (Ca2+) influx. Here we report the cryo-electron microscopy structure of the Syt1-SNARE complex on anionic-lipid containing membranes. Under resting conditions, the Syt1 C2 domains bind the membrane with a magnesium (Mg2+)-mediated partial insertion of the aliphatic loops, alongside weak interactions with the anionic lipid headgroups. The C2B domain concurrently interacts the SNARE bundle via the 'primary' interface and is positioned between the SNAREpins and the membrane. In this configuration, Syt1 is projected to sterically delay the complete assembly of the associated SNAREpins and thus, contribute to clamping fusion. This Syt1-SNARE organization is disrupted upon Ca2+-influx as Syt1 reorients into the membrane, likely displacing the attached SNAREpins and reversing the fusion clamp. We thus conclude that the cation (Mg2+/Ca2+) dependent membrane interaction is a key determinant of the dual clamp/activator function of Synaptotagmin-1.


Cell Membrane/ultrastructure , Membrane Lipids/metabolism , SNARE Proteins/ultrastructure , Synaptotagmin I/ultrastructure , Animals , Calcium/metabolism , Cell Membrane/metabolism , Cryoelectron Microscopy , Magnesium/metabolism , Membrane Fusion , Neurotransmitter Agents/metabolism , Protein Binding , Rats , SNARE Proteins/metabolism , Synaptic Transmission , Synaptotagmin I/metabolism
19.
Small ; 15(21): e1900725, 2019 05.
Article En | MEDLINE | ID: mdl-30977975

Experimental setups to produce and to monitor model membranes have been successfully used for decades and brought invaluable insights into many areas of biology. However, they all have limitations that prevent the full in vitro mimicking and monitoring of most biological processes. Here, a suspended physiological bilayer-forming chip is designed from 3D-printing techniques. This chip can be simultaneously integrated to a confocal microscope and a path-clamp amplifier. It is composed of poly(dimethylsiloxane) and consists of a ≈100 µm hole, where the horizontal planar bilayer is formed, connecting two open crossed-channels, which allows for altering of each lipid monolayer separately. The bilayer, formed by the zipping of two lipid leaflets, is free-standing, horizontal, stable, fluid, solvent-free, and flat with the 14 types of physiologically relevant lipids, and the bilayer formation process is highly reproducible. Because of the two channels, asymmetric bilayers can be formed by making the two lipid leaflets of different composition. Furthermore, proteins, such as transmembrane, peripheral, and pore-forming proteins, can be added to the bilayer in controlled orientation and keep their native mobility and activity. These features allow in vitro recapitulation of membrane process close to physiological conditions.


Microfluidics/methods , Printing, Three-Dimensional , Dimethylpolysiloxanes/chemistry , Fluorescence Recovery After Photobleaching , Lipid Bilayers/chemistry
20.
FEBS Lett ; 593(2): 154-162, 2019 01.
Article En | MEDLINE | ID: mdl-30570144

The buttressed-ring hypothesis, supported by recent cryo-electron tomography analysis of docked synaptic-like vesicles in neuroendocrine cells, postulates that prefusion SNAREpins are stabilized and organized by Synaptotagmin (Syt) ring-like oligomers. Here, we use a reconstituted single-vesicle fusion analysis to test the prediction that destabilizing the Syt1 oligomers destabilizes the clamp and results in spontaneous fusion in the absence of Ca2+ . Vesicles in which Syt oligomerization is compromised by a ring-destabilizing mutation dock and diffuse freely on the bilayer until they fuse spontaneously, similar to vesicles containing only v-SNAREs. In contrast, vesicles containing wild-type Syt are immobile as soon as they attach to the bilayer and remain frozen in place, up to at least 1 h until fusion is triggered by Ca2+ .


Calcium/metabolism , SNARE Proteins/metabolism , Synaptic Vesicles/metabolism , Synaptotagmin I/chemistry , Synaptotagmin I/metabolism , Animals , Cryoelectron Microscopy , Electron Microscope Tomography , Membrane Fusion , Mutation , Protein Multimerization , SNARE Proteins/genetics , Synaptotagmin I/genetics
...