Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ISME J ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984785

RESUMEN

The rhizosphere constitutes a dynamic interface between plant hosts and their associated microbial communities. Despite the acknowledged potential for enhancing plant fitness by manipulating the rhizosphere, the engineering of the rhizosphere microbiome through inoculation has posed significant challenges. These challenges are thought to arise from the competitive microbial ecosystem where introduced microbes must survive, and the absence of adaptation to the specific metabolic and environmental demands of the rhizosphere. Here, we engineered a synthetic rhizosphere community (SRC1) with the anticipation that it would exhibit a selective advantage in colonizing the host Sorghum bicolor, thereby potentially fostering its growth. SRC1 was assembled from bacterial isolates identified either for their potential role in community cohesion through network analysis or for their ability to benefit from host-specific exudate compounds. The growth performance of SRC1 was assessed in vitro on solid media, in planta under gnotobiotic laboratory conditions, and in the field. Our findings reveal that SRC1 cohesion is most robust when cultivated in the presence of the plant host under laboratory conditions, with lineages being lost from the community when grown either in vitro or in a native field setting. We establish that SRC1 effectively promotes the growth of both above- and below-ground plant phenotypes in both laboratory and native field contexts. Furthermore, in laboratory conditions, these growth enhancements correlate with the transcriptional dampening of lignin biosynthesis in the host. Collectively, these results underscore the potential utility of synthetic microbial communities for modulating crop performance in controlled and native environments alike.

2.
ISME J ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38648288

RESUMEN

Soil microbial communities impact carbon sequestration and release, biogeochemical cycling, and agricultural yields. These global effects rely on metabolic interactions that modulate community composition and function. However, the physicochemical and taxonomic complexity of soil and the scarcity of available isolates for phenotypic testing are significant barriers to studying soil microbial interactions. Corrinoids-the vitamin B12 family of cofactors-are critical for microbial metabolism, yet they are synthesized by only a subset of microbiome members. Here, we evaluated corrinoid production and dependence in soil bacteria as a model to investigate the ecological roles of microorganisms involved in metabolic interactions. We isolated and characterized a taxonomically diverse collection of 161 soil bacteria from a single study site. Most corrinoid-dependent bacteria in the collection prefer B12 over other corrinoids, while all tested producers synthesize B12, indicating metabolic compatibility between producers and dependents in the collection. Furthermore, a subset of producers release B12 at levels sufficient to support dependent isolates in laboratory culture at estimated ratios of up to 1000 dependents per producer. Within our isolate collection, we did not find strong phylogenetic patterns in corrinoid production or dependence. Upon investigating trends in the phylogenetic dispersion of corrinoid metabolism categories across sequenced bacteria from various environments, we found that these traits are conserved in 47 out of 85 genera. Together, these phenotypic and genomic results provide evidence for corrinoid-based metabolic interactions among bacteria and provide a framework for the study of nutrient-sharing ecological interactions in microbial communities.

3.
Nature ; 629(8010): 165-173, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632398

RESUMEN

Streptomyces are a genus of ubiquitous soil bacteria from which the majority of clinically utilized antibiotics derive1. The production of these antibacterial molecules reflects the relentless competition Streptomyces engage in with other bacteria, including other Streptomyces species1,2. Here we show that in addition to small-molecule antibiotics, Streptomyces produce and secrete antibacterial protein complexes that feature a large, degenerate repeat-containing polymorphic toxin protein. A cryo-electron microscopy structure of these particles reveals an extended stalk topped by a ringed crown comprising the toxin repeats scaffolding five lectin-tipped spokes, which led us to name them umbrella particles. Streptomyces coelicolor encodes three umbrella particles with distinct toxin and lectin composition. Notably, supernatant containing these toxins specifically and potently inhibits the growth of select Streptomyces species from among a diverse collection of bacteria screened. For one target, Streptomyces griseus, inhibition relies on a single toxin and that intoxication manifests as rapid cessation of vegetative hyphal growth. Our data show that Streptomyces umbrella particles mediate competition among vegetative mycelia of related species, a function distinct from small-molecule antibiotics, which are produced at the onset of reproductive growth and act broadly3,4. Sequence analyses suggest that this role of umbrella particles extends beyond Streptomyces, as we identified umbrella loci in nearly 1,000 species across Actinobacteria.


Asunto(s)
Antibiosis , Proteínas Bacterianas , Toxinas Bacterianas , Streptomyces , Antibacterianos/biosíntesis , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacología , Antibiosis/efectos de los fármacos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/farmacología , Proteínas Bacterianas/ultraestructura , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/farmacología , Microscopía por Crioelectrón , Lectinas/química , Lectinas/genética , Lectinas/metabolismo , Lectinas/ultraestructura , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Streptomyces/química , Streptomyces/efectos de los fármacos , Streptomyces/genética , Streptomyces/crecimiento & desarrollo , Streptomyces coelicolor/química , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Streptomyces griseus/efectos de los fármacos , Streptomyces griseus/genética , Streptomyces griseus/crecimiento & desarrollo , Streptomyces griseus/metabolismo
4.
Sci Adv ; 9(10): eade1285, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36897939

RESUMEN

Efficient genome engineering is critical to understand and use microbial functions. Despite recent development of tools such as CRISPR-Cas gene editing, efficient integration of exogenous DNA with well-characterized functions remains limited to model bacteria. Here, we describe serine recombinase-assisted genome engineering, or SAGE, an easy-to-use, highly efficient, and extensible technology that enables selection marker-free, site-specific genome integration of up to 10 DNA constructs, often with efficiency on par with or superior to replicating plasmids. SAGE uses no replicating plasmids and thus lacks the host range limitations of other genome engineering technologies. We demonstrate the value of SAGE by characterizing genome integration efficiency in five bacteria that span multiple taxonomy groups and biotechnology applications and by identifying more than 95 heterologous promoters in each host with consistent transcription across environmental and genetic contexts. We anticipate that SAGE will rapidly expand the number of industrial and environmental bacteria compatible with high-throughput genetics and synthetic biology.


Asunto(s)
Sistemas CRISPR-Cas , Ingeniería Genética , Edición Génica , Bacterias/genética , ADN
5.
Front Plant Sci ; 14: 1050483, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36743495

RESUMEN

Plants compete for light partly by over-producing chlorophyll in leaves. The resulting high light absorption is an effective strategy for out competing neighbors in mixed communities, but it prevents light transmission to lower leaves and limits photosynthesis in dense agricultural canopies. We used a CRISPR/Cas9-mediated approach to engineer rice plants with truncated light-harvesting antenna (TLA) via knockout mutations to individual antenna assembly component genes CpSRP43, CpSRP54a, and its paralog, CpSRP54b. We compared the photosynthetic contributions of these components in rice by studying the growth rates of whole plants, quantum yield of photosynthesis, chlorophyll density and distribution, and phenotypic abnormalities. Additionally, we investigated a Poales-specific duplication of CpSRP54. The Poales are an important family that includes staple crops such as rice, wheat, corn, millet, and sorghum. Mutations in any of these three genes involved in antenna assembly decreased chlorophyll content and light absorption and increased photosynthesis per photon absorbed (quantum yield). These results have significant implications for the improvement of high leaf-area-index crop monocultures.

6.
Mol Ecol ; 32(10): 2674-2687, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35000239

RESUMEN

The shifts in adaptive strategies revealed by ecological succession and the mechanisms that facilitate these shifts are fundamental to ecology. These adaptive strategies could be particularly important in communities of arbuscular mycorrhizal fungi (AMF) mutualistic with sorghum, where strong AMF succession replaces initially ruderal species with competitive ones and where the strongest plant response to drought is to manage these AMF. Although most studies of agriculturally important fungi focus on parasites, the mutualistic symbionts, AMF, constitute a research system of human-associated fungi whose relative simplicity and synchrony are conducive to experimental ecology. First, we hypothesize that, when irrigation is stopped to mimic drought, competitive AMF species should be replaced by AMF species tolerant to drought stress. We then, for the first time, correlate AMF abundance and host plant transcription to test two novel hypotheses about the mechanisms behind the shift from ruderal to competitive AMF. Surprisingly, despite imposing drought stress, we found no stress-tolerant AMF, probably due to our agricultural system having been irrigated for nearly six decades. Remarkably, we found strong and differential correlation between the successional shift from ruderal to competitive AMF and sorghum genes whose products (i) produce and release strigolactone signals, (ii) perceive mycorrhizal-lipochitinoligosaccharide (Myc-LCO) signals, (iii) provide plant lipid and sugar to AMF, and (iv) import minerals and water provided by AMF. These novel insights frame new hypotheses about AMF adaptive evolution and suggest a rationale for selecting AMF to reduce inputs and maximize yields in commercial agriculture.


Asunto(s)
Micorrizas , Humanos , Micorrizas/genética , Simbiosis/genética , Plantas/genética , Plantas/microbiología , Agricultura , Expresión Génica , Raíces de Plantas/microbiología , Microbiología del Suelo , Suelo
7.
Nat Commun ; 13(1): 3867, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35790741

RESUMEN

Plant response to drought stress involves fungi and bacteria that live on and in plants and in the rhizosphere, yet the stability of these myco- and micro-biomes remains poorly understood. We investigate the resistance and resilience of fungi and bacteria to drought in an agricultural system using both community composition and microbial associations. Here we show that tests of the fundamental hypotheses that fungi, as compared to bacteria, are (i) more resistant to drought stress but (ii) less resilient when rewetting relieves the stress, found robust support at the level of community composition. Results were more complex using all-correlations and co-occurrence networks. In general, drought disrupts microbial networks based on significant positive correlations among bacteria, among fungi, and between bacteria and fungi. Surprisingly, co-occurrence networks among functional guilds of rhizosphere fungi and leaf bacteria were strengthened by drought, and the same was seen for networks involving arbuscular mycorrhizal fungi in the rhizosphere. We also found support for the stress gradient hypothesis because drought increased the relative frequency of positive correlations.


Asunto(s)
Microbiota , Micorrizas , Bacterias/genética , Microbiota/fisiología , Plantas/microbiología , Rizosfera , Microbiología del Suelo
8.
Methods Mol Biol ; 2481: 353-367, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35641774

RESUMEN

Plants form intimate associations with microorganisms, and these associations are directly impacted by the host genotype. However, identifying specific host genetic pathways that influence these microbial interactions has proved challenging. Genome-wide association-based approaches that use features of microbiome composition as a quantitative trait represent a novel and underutilized strategy to identify such pathways. Several recent studies have demonstrated the potential utility of plant microbiome-based genome-wide association studies (GWAS). In this chapter, we describe the process of implementing GWAS using the plant microbiome as the primary quantitative trait, considering experimental design, sample harvest, and processing, but with an emphasis on data filtering, data normalization, and statistical analyses.


Asunto(s)
Estudio de Asociación del Genoma Completo , Microbiota , Genotipo , Microbiota/genética , Fenotipo , Plantas/genética
9.
EMBO J ; 41(6): e109102, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35146778

RESUMEN

The microbiome plays an important role in shaping plant growth and immunity, but few plant genes and pathways impacting plant microbiome composition have been reported. In Arabidopsis thaliana, the phosphate starvation response (PSR) was recently found to modulate the root microbiome upon phosphate (Pi) starvation through the transcriptional regulator PHR1. Here, we report that A. thaliana PHR1 directly binds to the promoters of rapid alkalinization factor (RALF) genes, and activates their expression under phosphate-starvation conditions. RALFs in turn suppress complex formation of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) receptor through FERONIA, a previously-identified PTI modulator that increases resistance to certain detrimental microorganisms. Suppression of immunity via the PHR1-RALF-FERONIA axis allows colonization by specialized root microbiota that help to alleviate phosphate starvation by upregulating the expression of PSR genes. These findings provide a new paradigm for coordination of host-microbe homeostasis through modulating plant innate immunity after environmental perturbations.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Microbiota , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Fosfatos/metabolismo , Inmunidad de la Planta/genética , Plantas/metabolismo , Factores de Transcripción/metabolismo
10.
Front Plant Sci ; 12: 747225, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868130

RESUMEN

Renewable fuels are needed to replace fossil fuels in the immediate future. Lignocellulosic bioenergy crops provide a renewable alternative that sequesters atmospheric carbon. To prevent displacement of food crops, it would be advantageous to grow biofuel crops on marginal lands. These lands will likely face more frequent and extreme drought conditions than conventional agricultural land, so it is crucial to see how proposed bioenergy crops fare under these conditions and how that may affect lignocellulosic biomass composition and saccharification properties. We found that while drought impacts the plant cell wall of Sorghum bicolor differently according to tissue and timing of drought induction, drought-induced cell wall compositional modifications are relatively minor and produce no negative effect on biomass conversion. This contrasts with the cell wall-related transcriptome, which had a varied range of highly variable genes (HVGs) within four cell wall-related GO categories, depending on the tissues surveyed and time of drought induction. Further, many HVGs had expression changes in which putative impacts were not seen in the physical cell wall or which were in opposition to their putative impacts. Interestingly, most pre-flowering drought-induced cell wall changes occurred in the leaf, with matrix and lignin compositional changes that did not persist after recovery from drought. Most measurable physical post-flowering cell wall changes occurred in the root, affecting mainly polysaccharide composition and cross-linking. This study couples transcriptomics to cell wall chemical analyses of a C4 grass experiencing progressive and differing drought stresses in the field. As such, we can analyze the cell wall-specific response to agriculturally relevant drought stresses on the transcriptomic level and see whether those changes translate to compositional or biomass conversion differences. Our results bolster the conclusion that drought stress does not substantially affect the cell wall composition of specific aerial and subterranean biomass nor impede enzymatic hydrolysis of leaf biomass, a positive result for biorefinery processes. Coupled with previously reported results on the root microbiome and rhizosphere and whole transcriptome analyses of this study, we can formulate and test hypotheses on individual gene candidates' function in mediating drought stress in the grass cell wall, as demonstrated in sorghum.

11.
Ecol Lett ; 24(12): 2674-2686, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34523223

RESUMEN

Root-associated fungal communities modify the climatic niches and even the competitive ability of their hosts, yet how the different components of the root microbiome are modified by habitat loss remains a key knowledge gap. Using principles of landscape ecology, we tested how free-living versus host-associated microbes differ in their response to landscape heterogeneity. Further, we explore how compartmentalisation of microbes into specialised root structures filters for key fungal symbionts. Our study demonstrates that free-living fungal community structure correlates with landscape heterogeneity, but that host-associated fungal communities depart from these patterns. Specifically, biotic filtering in roots, especially via compartmentalisation within specialised root structures, decouples the biogeographic patterns of host-associated fungal communities from the soil community. In this way, even as habitat loss and fragmentation threaten fungal diversity in the soils, plant hosts exert biotic controls to ensure associations with critical mutualists, helping to preserve the root mycobiome.


Asunto(s)
Microbiota , Micobioma , Micorrizas , Hongos , Raíces de Plantas , Suelo , Microbiología del Suelo
12.
Commun Biol ; 4(1): 962, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34385583

RESUMEN

Progress in sequencing, microfluidics, and analysis strategies has revolutionized the granularity at which multicellular organisms can be studied. In particular, single-cell transcriptomics has led to fundamental new insights into animal biology, such as the discovery of new cell types and cell type-specific disease processes. However, the application of single-cell approaches to plants, fungi, algae, or bacteria (environmental organisms) has been far more limited, largely due to the challenges posed by polysaccharide walls surrounding these species' cells. In this perspective, we discuss opportunities afforded by single-cell technologies for energy and environmental science and grand challenges that must be tackled to apply these approaches to plants, fungi and algae. We highlight the need to develop better and more comprehensive single-cell technologies, analysis and visualization tools, and tissue preparation methods. We advocate for the creation of a centralized, open-access database to house plant single-cell data. Finally, we consider how such efforts should balance the need for deep characterization of select model species while still capturing the diversity in the plant kingdom. Investments into the development of methods, their application to relevant species, and the creation of resources to support data dissemination will enable groundbreaking insights to propel energy and environmental science forward.


Asunto(s)
Conservación de los Recursos Energéticos/métodos , Bases de Datos como Asunto , Ciencia Ambiental/métodos , Plantas , Análisis de la Célula Individual/métodos , Tecnología/instrumentación
13.
Front Plant Sci ; 12: 694727, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249066

RESUMEN

While drought severely affects plant growth and crop production, the molecular mechanisms of the drought response of plants remain unclear. In this study, we demonstrated for the first time the effect of the pseudo-protease AtFtsHi3 of Arabidopsis thaliana on overall plant growth and in drought tolerance. An AtFTSHi3 knock-down mutant [ftshi3-1(kd)] displayed a pale-green phenotype with lower photosynthetic efficiency and Darwinian fitness compared to wild type (Wt). An observed delay in seed germination of ftshi3-1(kd) was attributed to overaccumulation of abscisic acid (ABA); ftshi3-1(kd) seedlings showed partial sensitivity to exogenous ABA. Being exposed to similar severity of soil drying, ftshi3-1(kd) was drought-tolerant up to 20 days after the last irrigation, while wild type plants wilted after 12 days. Leaves of ftshi3-1(kd) contained reduced stomata size, density, and a smaller stomatic aperture. During drought stress, ftshi3-1(kd) showed lowered stomatal conductance, increased intrinsic water-use efficiency (WUEi), and slower stress acclimation. Expression levels of ABA-responsive genes were higher in leaves of ftshi3-1(kd) than Wt; DREB1A, but not DREB2A, was significantly upregulated during drought. However, although ftshi3-1(kd) displayed a drought-tolerant phenotype in aboveground tissue, the root-associated bacterial community responded to drought.

14.
Nat Commun ; 12(1): 3209, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34050180

RESUMEN

Recent studies have demonstrated that drought leads to dramatic, highly conserved shifts in the root microbiome. At present, the molecular mechanisms underlying these responses remain largely uncharacterized. Here we employ genome-resolved metagenomics and comparative genomics to demonstrate that carbohydrate and secondary metabolite transport functionalities are overrepresented within drought-enriched taxa. These data also reveal that bacterial iron transport and metabolism functionality is highly correlated with drought enrichment. Using time-series root RNA-Seq data, we demonstrate that iron homeostasis within the root is impacted by drought stress, and that loss of a plant phytosiderophore iron transporter impacts microbial community composition, leading to significant increases in the drought-enriched lineage, Actinobacteria. Finally, we show that exogenous application of iron disrupts the drought-induced enrichment of Actinobacteria, as well as their improvement in host phenotype during drought stress. Collectively, our findings implicate iron metabolism in the root microbiome's response to drought and may inform efforts to improve plant drought tolerance to increase food security.


Asunto(s)
Actinobacteria/metabolismo , Sequías , Hierro/metabolismo , Microbiota/fisiología , Sorghum/fisiología , Aclimatación , Actinobacteria/genética , Producción de Cultivos , Seguridad Alimentaria , Metagenómica/métodos , Raíces de Plantas/microbiología , RNA-Seq , Rizosfera , Microbiología del Suelo , Sorghum/microbiología , Estrés Fisiológico
15.
ISME J ; 15(11): 3181-3194, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33980999

RESUMEN

Host genetics has recently been shown to be a driver of plant microbiome composition. However, identifying the underlying genetic loci controlling microbial selection remains challenging. Genome-wide association studies (GWAS) represent a potentially powerful, unbiased method to identify microbes sensitive to the host genotype and to connect them with the genetic loci that influence their colonization. Here, we conducted a population-level microbiome analysis of the rhizospheres of 200 sorghum genotypes. Using 16S rRNA amplicon sequencing, we identify rhizosphere-associated bacteria exhibiting heritable associations with plant genotype, and identify significant overlap between these lineages and heritable taxa recently identified in maize. Furthermore, we demonstrate that GWAS can identify host loci that correlate with the abundance of specific subsets of the rhizosphere microbiome. Finally, we demonstrate that these results can be used to predict rhizosphere microbiome structure for an independent panel of sorghum genotypes based solely on knowledge of host genotypic information.


Asunto(s)
Microbiota , Rizosfera , Estudio de Asociación del Genoma Completo , Microbiota/genética , ARN Ribosómico 16S/genética , Microbiología del Suelo
16.
Microbiome ; 9(1): 69, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33762001

RESUMEN

Host-microbiome interactions are recognized for their importance to host health. An improved understanding of the molecular underpinnings of host-microbiome relationships will advance our capacity to accurately predict host fitness and manipulate interaction outcomes. Within the plant microbiome research field, unlocking the functional relationships between plants and their microbial partners is the next step to effectively using the microbiome to improve plant fitness. We propose that strategies that pair host and microbial datasets-referred to here as holo-omics-provide a powerful approach for hypothesis development and advancement in this area. We discuss several experimental design considerations and present a case study to highlight the potential for holo-omics to generate a more holistic perspective of molecular networks within the plant microbiome system. In addition, we discuss the biggest challenges for conducting holo-omics studies; specifically, the lack of vetted analytical frameworks, publicly available tools, and required technical expertise to process and integrate heterogeneous data. Finally, we conclude with a perspective on appropriate use-cases for holo-omics studies, the need for downstream validation, and new experimental techniques that hold promise for the plant microbiome research field. We argue that utilizing a holo-omics approach to characterize host-microbiome interactions can provide important opportunities for broadening system-level understandings and significantly inform microbial approaches to improving host health and fitness. Video abstract.


Asunto(s)
Microbiota , Microbiota/genética , Plantas
17.
PLoS One ; 16(3): e0248030, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33735198

RESUMEN

While numerous studies implicate the microbiome in host fitness, contributions of host evolution to microbial recruitment remain largely uncharacterized. Past work has shown that plant polyploidy and domestication can influence plant biotic and abiotic interactions, yet impacts on broader microbiome assembly are still unknown for many crop species. In this study, we utilized three approaches-two field studies and one greenhouse-based experiment-to determine the degree to which patterns in bacterial community assembly in wheat (Triticum sp.) roots and rhizospheres are attributable to the host factors of ploidy level (2n, 4n, 6n) and domestication status (cultivated vs. wild). Profiling belowground bacterial communities with 16S rRNA gene amplicon sequencing, we analyzed patterns in diversity and composition. From our initial analyses of a subsetted dataset, we observed that host ploidy level was statistically significant in explaining variation in alpha and beta diversity for rhizosphere microbiomes, as well as correlated with distinct phylum-level shifts in composition, in the field. Using a reduced complexity field soil inoculum and controlled greenhouse conditions, we found some evidence suggesting that genomic lineage and ploidy level influence root alpha and beta diversity (p-value<0.05). However, in a follow-up field experiment using an expanded set of Triticum genomes that included both wild and domesticated varieties, we did not find a strong signal for either diploid genome lineages, domestication status, or ploidy level in shaping rhizosphere bacterial communities. Taken together, these results suggest that while host ploidy and domestication may have some minor influence on microbial assembly, these impacts are subtle and difficult to assess in belowground compartments for wheat varieties. By improving our understanding of the degree to which host ploidy and cultivation factors shape the plant microbiome, this research informs perspectives on what key driving forces may underlie microbiome structuring, as well as where future efforts may be best directed towards fortifying plant growth by microbial means. The greatest influence of the host on the wheat microbiome appeared to occur in the rhizosphere compartment, and we suggest that future work focuses on this environment to further characterize how host genomic and phenotypic changes influence plant-microbe communications.


Asunto(s)
Domesticación , Genotipo , Microbiota/genética , Ploidias , Triticum/microbiología , Genoma de Planta , Triticum/genética
18.
Physiol Plant ; 172(2): 1045-1058, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33616955

RESUMEN

Matrix metalloproteinases (MMPs) are zinc-dependent endo-peptidases that in mammals are known to be involved in remodeling the extracellular matrix (ECM) in developmental and pathological processes. In this study, we report At5-MMP of Arabidopsis thaliana to be important for root development and root bacterial communities. At5-MMP is mainly localized in the root vasculature and lateral root, an At5-MMP T-DNA insertion mutant (mmp5 KO) showed reduced root growth and a lower number of root apexes, causing reduced water uptake from the soil. Subsequently, mmp5 KO is sensitive to drought stress. Inhibited auxin transport was accompanied with resistance to indole-3-acetic acid (IAA), 2, 4-dichlorophenoxyacetic acid (2, 4-D), and 1-naphthaleneacetic acid (NAA). The content of endogenous abscisic acid (ABA) was lower in roots of mmp5 KO than in wild type. Genes responsive to ABA as well as genes encoding enzymes of the proline biosynthesis were expressed to a lower extent in mmp5 KO than in wild type. Moreover, drought stress modulated root-associated bacterial communities of mmp5 KO: the number of Actinobacteria increased. Therefore, At5-MMP modulates auxin/ABA signaling rendering the plant sensitive to drought stress and recruiting differential root bacterial communities.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Metaloproteinasas de la Matriz , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
19.
Appl Environ Microbiol ; 87(5)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33310712

RESUMEN

Soils play important roles in biological productivity. While past work suggests that microbes affect soil health and respond to agricultural practices, it is not well known how soil management shapes crop host microbiomes. To elucidate the impact of management on microbial composition and function in the sorghum microbiome, we performed 16S rRNA gene and ITS2 amplicon sequencing and metatranscriptomics on soil and root samples collected from a site in California's San Joaquin Valley that is under long-term cultivation with 1) standard (ST) or no tilling (NT) and 2) cover-cropping (CC) or leaving the field fallow (NO). Our results revealed that microbial diversity, composition, and function change across tillage and cover type, with a heightened response in fungal communities, versus bacterial. Surprisingly, ST harbored greater microbial alpha diversity than NT, indicating that tillage may open niche spaces for broad colonization. Across management regimes, we observed class-level taxonomic level shifts. Additionally, we found significant functional restructuring across treatments, including enrichment for microbial lipid and carbohydrate transport and metabolism and cell motility with NT. Differences in carbon cycling were also observed, with increased prevalence of glycosyltransferase and glycoside hydrolase carbohydrate active enzyme families with CC. Lastly, treatment significantly influenced arbuscular mycorrhizal fungi, which had the greatest prevalence and activity under ST, suggesting that soil practices mediate known beneficial plant-microbe relationships. Collectively, our results demonstrate how agronomic practices impact critical interactions within the plant microbiome and inform future efforts to configure trait-associated microbiomes in crops.Importance While numerous studies show that farming practices can influence the soil microbiome, there are often conflicting results on how microbial diversity and activity respond to treatment. In addition, there is very little work published on how the corresponding crop plant microbiome is impacted. With bacteria and fungi known to critically affect soil health and plant growth, we concurrently compared how the practices of no and standard tillage, in combination with either cover-cropping or fallow fields, shape soil and plant-associated microbiomes between the two classifications. In determining not only the response to treatment in microbial diversity and composition, but for activity as well, this work demonstrates the significance of agronomic practice in modulating plant-microbe interactions, as well as encourages future work on the mechanisms involved in community assemblages supporting similar crop outcomes.

20.
Mol Ecol ; 29(23): 4721-4734, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33000868

RESUMEN

Experimental drought has been shown to delay the development of the root microbiome and increase the relative abundance of Actinobacteria, however, the generalizability of these findings to natural systems or other diverse plant hosts remains unknown. Bacterial cell wall thickness and growth morphology (e.g., filamentous or unicellular) have been proposed as traits that may mediate bacterial responses to environmental drivers. Leveraging a natural gradient of water-availability across the coast redwood (Sequoia sempervirens) range, we tested three hypotheses: (a) that site-specific water-availability is an important predictor of bacterial community composition for redwood roots and rhizosphere soils; (b) that there is relative enrichment of Actinobacteria and other monoderm bacterial groups within the redwood microbiome in response to drier conditions; and (c) that bacterial growth morphology is an important predictor of bacteria response to water-availability, where filamentous taxa will become more dominant at drier sites compared to unicellular bacteria. We find that both α- and ß-diversity of redwood bacterial communities is partially explained by water-availability and that Actinobacterial enrichment is a conserved response of land plants to water-deficit. Further, we highlight how the trend of Actinobacterial enrichment in the redwood system is largely driven by the Actinomycetales. We propose bacterial growth morphology (filamentous vs. unicellular) as an additional mechanism behind the increase in Actinomycetales with increasing aridity. A trait-based approach including cell-wall thickness and growth morphology may explain the distribution of bacterial taxa across environmental gradients and help to predict patterns of bacterial community composition for a wide range of host plants.


Asunto(s)
Microbiota , Sequoia , Bacterias/genética , Microbiota/genética , Raíces de Plantas , Rizosfera , Microbiología del Suelo , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...