Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 78
1.
Haematologica ; 109(1): 175-185, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-37199120

Intracellular uptake of adenosine is essential for optimal erythroid commitment and differentiation of hematopoietic progenitor cells. The role of adenosine signaling is well documented in the regulation of blood flow, cell proliferation, apoptosis, and stem cell regeneration. However, the role of adenosine signaling in hematopoiesis remains unclear. In this study, we show that adenosine signaling inhibits the proliferation of erythroid precursors by activating the p53 pathway and hampers the terminal erythroid maturation. Furthermore, we demonstrate that the activation of specific adenosine receptors promotes myelopoiesis. Overall, our findings indicate that extracellular adenosine could be a new player in the regulation of hematopoiesis.


Adenosine , Erythropoiesis , Humans , Adenosine/metabolism , Hematopoiesis , Myelopoiesis , Hematopoietic Stem Cells/metabolism , Cell Differentiation
2.
Cell Host Microbe ; 31(12): 2093-2106.e7, 2023 Dec 13.
Article En | MEDLINE | ID: mdl-38056457

The erythrocyte silent Duffy blood group phenotype in Africans is thought to confer resistance to Plasmodium vivax blood-stage infection. However, recent studies report P. vivax infections across Africa in Fy-negative individuals. This suggests that the globin transcription factor 1 (GATA-1) SNP underlying Fy negativity does not entirely abolish Fy expression or that P. vivax has developed a Fy-independent red blood cell (RBC) invasion pathway. We show that RBCs and erythroid progenitors from in vitro differentiated CD34 cells and from bone marrow aspirates from Fy-negative samples express a functional Fy on their surface. This suggests that the GATA-1 SNP does not entirely abolish Fy expression. Given these results, we developed an in vitro culture system for P. vivax and show P. vivax can invade erythrocytes from Duffy-negative individuals. This study provides evidence that Fy is expressed in Fy-negative individuals and explains their susceptibility to P. vivax with major implications and challenges for P. vivax malaria eradication.


Malaria, Vivax , Plasmodium vivax , Humans , Plasmodium vivax/metabolism , Antigens, Protozoan , Erythropoiesis , Erythrocytes , Duffy Blood-Group System/genetics , Duffy Blood-Group System/metabolism
3.
Transfusion ; 63(3): 610-618, 2023 03.
Article En | MEDLINE | ID: mdl-36744388

BACKGROUND: An antibody directed against a high-prevalence red blood cell (RBC) antigen was detected in a 67-year-old female patient of North African ancestry with a history of a single pregnancy and blood transfusion. So far, the specificity of the proband's alloantibody remained unknown in our immunohematology reference laboratory. STUDY DESIGN AND METHODS: Whole-exome sequencing (WES) was performed on the proband's DNA. The reactivity to the SLC29A1-encoded ENT1 adenosine transporter was investigated by flow cytometry analyses of ENT1-expressing HEK293 cells, and RBCs from Augustine-typed individuals. Erythrocyte protein expression level, nucleoside-binding capacity, and molecular structure of the proband's ENT1 variant were further explored by western blot, flow cytometry, and molecular dynamics calculations, respectively. RESULTS: A missense variant was identified in the SLC29A1 gene, which encodes the Augustine blood group system. It arises from homozygosity for a rare c.242A > G missense mutation that results in a nonsynonymous p.Asn81Ser substitution within the large extracellular loop of ENT1. Flow cytometry analyses demonstrated that the proband's antibody was reactive against HEK-293 cells transfected with control but not proband's SLC29A1 cDNA. Consistent with this finding, proband's antibody was found to be reactive with At(a-) (AUG:-2), but not AUG:-1 (null phenotype) RBCs. Data from structural analysis further supported that the proband's p.Asn81Ser variation does not alter ENT1 binding of its specific inhibitor NBMPR. CONCLUSION: Our study provides evidence for a novel high-prevalence antigen, AUG4 (also called ATAM after the proband's name) in the Augustine blood group system, encoded by the rare SLC29A1 variant allele AUG*04 (c.242A > G, p.Asn81Ser).


Blood Group Antigens , Pregnancy , Female , Humans , HEK293 Cells , Prevalence , Blood Group Antigens/genetics , Isoantibodies , Molecular Structure
4.
Int J Mol Sci ; 24(2)2023 Jan 05.
Article En | MEDLINE | ID: mdl-36674586

Central retinal vein occlusion (CRVO) is a frequent retinal disorder inducing blindness due to the occlusion of the central vein of the retina. The primary cause of the occlusion remains to be identified leading to the lack of treatment. To date, current treatments mainly target the complications of the disease and do not target the primary dysfunctions. CRVO pathophysiology seems to be a multifactorial disorder; several studies did attempt to decipher the cellular and molecular mechanisms underlying the vessel obstruction, but no consensual mechanism has been found. The aim of the current review is to give an overview of CRVO pathophysiology and more precisely the role of the erythroid lineage. The review presents emerging data on red blood cell (RBC) functions besides their role as an oxygen transporter and how disturbance of RBC function could impact the whole vascular system. We also aim to gather new evidence of RBC involvement in CRVO occurrence.


Retinal Vein Occlusion , Humans , Retinal Vein Occlusion/etiology , Retina , Erythrocytes , Blindness , Oxygen
5.
EMBO Mol Med ; 15(3): e16320, 2023 03 08.
Article En | MEDLINE | ID: mdl-36695047

Blood phenotypes are defined by the presence or absence of specific blood group antigens at the red blood cell (RBC) surface, due to genetic polymorphisms among individuals. The recent development of genomic and proteomic approaches enabled the characterization of several enigmatic antigens. The choline transporter-like protein CTL2 encoded by the SLC44A2 gene plays an important role in platelet aggregation and neutrophil activation. By investigating alloantibodies to a high-prevalence antigen of unknown specificity, found in patients with a rare blood type, we showed that SLC44A2 is also expressed in RBCs and carries a new blood group system. Furthermore, we identified three siblings homozygous for a large deletion in SLC44A2, resulting in complete SLC44A2 deficiency. Interestingly, the first-ever reported SLC44A2-deficient individuals suffer from progressive hearing impairment, recurrent arterial aneurysms, and epilepsy. Furthermore, SLC44A2null individuals showed no significant platelet aggregation changes and do not suffer from any apparent hematological disorders. Overall, our findings confirm the function of SLC44A2 in hearing preservation and provide new insights into the possible role of this protein in maintaining cerebrovascular homeostasis.


Hearing Loss , Proteomics , Humans , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Hearing Loss/genetics , Phenotype , Membrane Glycoproteins/metabolism
6.
Res Pract Thromb Haemost ; 6(8): e12811, 2022 Nov.
Article En | MEDLINE | ID: mdl-36514346

Background: Severity of coronavirus disease 2019 (COVID-19) is often associated with thrombotic complications and cytokine storm leading to intensive are unit (ICU) admission. Platelets are known to be responsible for abnormal hemostasis parameters (thrombocytopenia, raised D-dimers, and prolonged prothrombin time) in other viral infections through the activation of the nucleotide-binding domain leucine repeat rich containing protein 3 inflammasome induced by signaling pathways driven by Bruton tyrosine kinase (BTK) and leading to caspase-1 activation. Objectives: We hypothesized that caspase-1 activation and the phosphorylation of BTK could be associated with the severity of the disease and that ibrutinib, a BTK inhibitor, could inhibit platelet activation. Methods and Results: We studied caspase-1 activation by flow cytometry and the phosphorylation of BTK by Western blot in a cohort of 51 Afro-Carribean patients with COVID-19 disease (19 not treated in ICU and 32 treated in ICU). Patients with a platelet count of 286.7 × 109/L (69-642 × 109/L) were treated by steroids and heparin preventive anticoagulation. Caspase-1 and BTK activation were associated with the severity of the disease and with the procoagulant state of the patients. Furthermore, we showed in vitro that the plasma of ICU patients with COVID-19 was able to increase CD62P expression and caspase-1 activity of healthy platelets and that ibrutinib could prevent it. Conclusions: Our results show that caspase-1 and BTK activation are related to disease severity and suggest the therapeutic hope raised by ibrutinib in the treatment of COVID-19 by reducing the procoagulant state of the patients.

7.
Br J Haematol ; 196(5): 1159-1169, 2022 03.
Article En | MEDLINE | ID: mdl-34962643

COVID-19 has compelled scientists to better describe its pathophysiology to find new therapeutic approaches. While risk factors, such as older age, obesity, and diabetes mellitus, suggest a central role of endothelial cells (ECs), autopsies have revealed clots in the pulmonary microvasculature that are rich in neutrophils and DNA traps produced by these cells, called neutrophil extracellular traps (NETs.) Submicron extracellular vesicles, called microparticles (MPs), are described in several diseases as being involved in pro-inflammatory pathways. Therefore, in this study, we analyzed three patient groups: one for which intubation was not necessary, an intubated group, and one group after extubation. In the most severe group, the intubated group, platelet-derived MPs and endothelial cell (EC)-derived MPs exhibited increased concentration and size, when compared to uninfected controls. MPs of intubated COVID-19 patients triggered EC death and overexpression of two adhesion molecules: P-selectin and vascular cell adhesion molecule-1 (VCAM-1). Strikingly, neutrophil adhesion and NET production were increased following incubation with these ECs. Importantly, we also found that preincubation of these COVID-19 MPs with the phosphatidylserine capping endogenous protein, annexin A5, abolished cytotoxicity, P-selectin and VCAM-1 induction, all like increases in neutrophil adhesion and NET release. Taken together, our results reveal that MPs play a key role in COVID-19 pathophysiology and point to a potential therapeutic: annexin A5.


COVID-19/immunology , Cell-Derived Microparticles/immunology , Endothelial Cells/immunology , Neutrophils/immunology , SARS-CoV-2/immunology , COVID-19/pathology , COVID-19/therapy , Cell Adhesion , Cell Death , Cell-Derived Microparticles/pathology , Cells, Cultured , Endothelial Cells/pathology , Extracellular Traps/immunology , Humans , Inflammation/immunology , Inflammation/pathology , Intubation , Neutrophils/pathology , Phosphatidylserines/immunology
8.
Nat Microbiol ; 6(8): 991-999, 2021 08.
Article En | MEDLINE | ID: mdl-34294905

More than one-third of the world's population is exposed to Plasmodium vivax malaria, mainly in Asia1. P. vivax preferentially invades reticulocytes (immature red blood cells)2-4. Previous work has identified 11 parasite proteins involved in reticulocyte invasion, including erythrocyte binding protein 2 (ref. 5) and the reticulocyte-binding proteins (PvRBPs)6-10. PvRBP2b binds to the transferrin receptor CD71 (ref. 11), which is selectively expressed on immature reticulocytes12. Here, we identified CD98 heavy chain (CD98), a heteromeric amino acid transporter from the SLC3 family (also known as SLCA2), as a reticulocyte-specific receptor for the PvRBP2a parasite ligand using mass spectrometry, flow cytometry, biochemical and parasite invasion assays. We characterized the expression level of CD98 at the surface of immature reticulocytes (CD71+) and identified an interaction between CD98 and PvRBP2a expressed at the merozoite surface. Our results identify CD98 as an additional host membrane protein, besides CD71, that is directly associated with P. vivax reticulocyte tropism. These findings highlight the potential of using PvRBP2a as a vaccine target against P. vivax malaria.


Erythrocytes/parasitology , Fusion Regulatory Protein 1, Heavy Chain/metabolism , Malaria, Vivax/metabolism , Plasmodium vivax/metabolism , Antigens, CD , Antigens, Protozoan/genetics , Antigens, Protozoan/metabolism , Erythrocytes/metabolism , Fusion Regulatory Protein 1, Heavy Chain/genetics , Host-Parasite Interactions , Humans , Malaria, Vivax/blood , Malaria, Vivax/genetics , Plasmodium vivax/genetics , Protein Binding , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Receptors, Transferrin , Reticulocytes/metabolism , Reticulocytes/parasitology
9.
Blood ; 137(26): 3660-3669, 2021 07 01.
Article En | MEDLINE | ID: mdl-33763700

Glycosylphosphatidylinositol (GPI) is a glycolipid that anchors >150 proteins to the cell surface. Pathogenic variants in several genes that participate in GPI biosynthesis cause inherited GPI deficiency disorders. Here, we reported that homozygous null alleles of PIGG, a gene involved in GPI modification, are responsible for the rare Emm-negative blood phenotype. Using a panel of K562 cells defective in both the GPI-transamidase and GPI remodeling pathways, we show that the Emm antigen, whose molecular basis has remained unknown for decades, is carried only by free GPI and that its epitope is composed of the second and third ethanolamine of the GPI backbone. Importantly, we show that the decrease in Emm expression in several inherited GPI deficiency patients is indicative of GPI defects. Overall, our findings establish Emm as a novel blood group system, and they have important implications for understanding the biological function of human free GPI.


Blood Group Antigens , Developmental Disabilities , Glycosylphosphatidylinositols/deficiency , Glycosylphosphatidylinositols/metabolism , Phosphotransferases (Alcohol Group Acceptor) , Seizures , Blood Group Antigens/genetics , Blood Group Antigens/metabolism , Developmental Disabilities/enzymology , Developmental Disabilities/genetics , Glycosylphosphatidylinositols/genetics , Humans , K562 Cells , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Seizures/enzymology , Seizures/genetics
10.
Blood ; 137(17): 2285-2298, 2021 04 29.
Article En | MEDLINE | ID: mdl-33657208

Permanent availability of red blood cells (RBCs) for transfusion depends on refrigerated storage, during which morphologically altered RBCs accumulate. Among these, a subpopulation of small RBCs, comprising type III echinocytes, spheroechinocytes, and spherocytes and defined as storage-induced microerythrocytes (SMEs), could be rapidly cleared from circulation posttransfusion. We quantified the proportion of SMEs in RBC concentrates from healthy human volunteers and assessed correlation with transfusion recovery, investigated the fate of SMEs upon perfusion through human spleen ex vivo, and explored where and how SMEs are cleared in a mouse model of blood storage and transfusion. In healthy human volunteers, high proportion of SMEs in long-stored RBC concentrates correlated with poor transfusion recovery. When perfused through human spleen, 15% and 61% of long-stored RBCs and SMEs were cleared in 70 minutes, respectively. High initial proportion of SMEs also correlated with high retention of RBCs by perfused human spleen. In the mouse model, SMEs accumulated during storage. Transfusion of long-stored RBCs resulted in reduced posttransfusion recovery, mostly due to SME clearance. After transfusion in mice, long-stored RBCs accumulated predominantly in spleen and were ingested mainly by splenic and hepatic macrophages. In macrophage-depleted mice, splenic accumulation and SME clearance were delayed, and transfusion recovery was improved. In healthy hosts, SMEs were cleared predominantly by macrophages in spleen and liver. When this well-demarcated subpopulation of altered RBCs was abundant in RBC concentrates, transfusion recovery was diminished. SME quantification has the potential to improve blood product quality assessment. This trial was registered at www.clinicaltrials.gov as #NCT02889133.


Blood Preservation , Erythrocytes , Animals , Erythrocyte Transfusion , Kinetics , Mice , Spherocytes
11.
Blood ; 137(25): 3548-3562, 2021 06 24.
Article En | MEDLINE | ID: mdl-33690842

The tight regulation of intracellular nucleotides is critical for the self-renewal and lineage specification of hematopoietic stem cells (HSCs). Nucleosides are major metabolite precursors for nucleotide biosynthesis and their availability in HSCs is dependent on their transport through specific membrane transporters. However, the role of nucleoside transporters in the differentiation of HSCs to the erythroid lineage and in red cell biology remains to be fully defined. Here, we show that the absence of the equilibrative nucleoside transporter (ENT1) in human red blood cells with a rare Augustine-null blood type is associated with macrocytosis, anisopoikilocytosis, an abnormal nucleotide metabolome, and deregulated protein phosphorylation. A specific role for ENT1 in human erythropoiesis was demonstrated by a defective erythropoiesis of human CD34+ progenitors following short hairpin RNA-mediated knockdown of ENT1. Furthermore, genetic deletion of ENT1 in mice was associated with reduced erythroid progenitors in the bone marrow, anemia, and macrocytosis. Mechanistically, we found that ENT1-mediated adenosine transport is critical for cyclic adenosine monophosphate homeostasis and the regulation of erythroid transcription factors. Notably, genetic investigation of 2 ENT1null individuals demonstrated a compensation by a loss-of-function variant in the ABCC4 cyclic nucleotide exporter. Indeed, pharmacological inhibition of ABCC4 in Ent1-/- mice rescued erythropoiesis. Overall, our results highlight the importance of ENT1-mediated nucleotide metabolism in erythropoiesis.


Adenosine Monophosphate/metabolism , Equilibrative Nucleoside Transporter 1/metabolism , Erythropoiesis , Hematopoietic Stem Cells/metabolism , Homeostasis , Animals , Equilibrative Nucleoside Transporter 1/genetics , Humans , Mice , Mice, Knockout
12.
Transfusion ; 61(3): 903-918, 2021 03.
Article En | MEDLINE | ID: mdl-33381865

BACKGROUND: Red blood cells (RBC) change upon hypothermic conservation, and storage for 6 weeks is associated with the short-term clearance of 15% to 20% of transfused RBCs. Metabolic rejuvenation applied to RBCs before transfusion replenishes energetic sources and reverses most storage-related alterations, but how it impacts RBC circulatory functions has not been fully elucidated. STUDY DESIGN AND METHODS: Six RBC units stored under blood bank conditions were analyzed weekly for 6 weeks and rejuvenated on Day 42 with an adenine-inosine-rich solution. Impact of storage and rejuvenation on adenosine triphosphate (ATP) levels, morphology, accumulation of storage-induced microerythrocytes (SMEs), elongation under an osmotic gradient (by LORRCA), hemolysis, and phosphatidylserine (PS) exposure was evaluated. The impact of rejuvenation on filterability and adhesive properties of stored RBCs was also assessed. RESULTS: Rejuvenation of RBCs restored intracellular ATP to almost normal levels and decreased the PS exposure from 2.78% to 0.41%. Upon rejuvenation, the proportion of SME dropped from 28.2% to 9.5%, while the proportion of normal-shaped RBCs (discocytes and echinocytes 1) increased from 47.7% to 67.1%. In LORCCA experiments, rejuvenation did not modify the capacity of RBCs to elongate and induced a reduction in cell volume. In functional tests, rejuvenation increased RBC filterability in a biomimetic splenic filter (+16%) and prevented their adhesion to endothelial cells (-87%). CONCLUSION: Rejuvenation reduces the proportion of morphologically altered and adhesive RBCs that accumulate during storage. Along with the improvement in their filterability, these data show that rejuvenation improves RBC properties related to their capacity to persist in circulation after transfusion.


Adenosine Triphosphate/metabolism , Erythrocyte Deformability/drug effects , Erythrocytes/drug effects , Erythrocytes/metabolism , Adenine/pharmacology , Blood Banks , Blood Preservation , Cryopreservation , Endothelial Cells/metabolism , Erythrocytes/cytology , Flow Cytometry , Hemolysis , Humans , Inosine/pharmacology , Phosphatidylserines/metabolism , Rejuvenation/physiology , Time Factors
13.
Cell Mol Biol Lett ; 25: 3, 2020.
Article En | MEDLINE | ID: mdl-32042281

BACKGROUND: Precise coordination of cytoskeletal components and dynamic control of cell adhesion and migration are required for crucial cell processes such as differentiation and morphogenesis. We investigated the potential involvement of αII-spectrin, a ubiquitous scaffolding element of the membrane skeleton, in the adhesion and angiogenesis mechanism. METHODS: The cell models were primary human umbilical vein endothelial cells (HUVECs) and a human dermal microvascular endothelial cell line (HMEC-1). After siRNA- and shRNA-mediated knockdown of αII-spectrin, we assessed its expression and that of its partners and adhesion proteins using western blotting. The phenotypes of the control and spectrin-depleted cells were examined using immunofluorescence and video microscopy. Capillary tube formation was assessed using the thick gel Matrigel matrix-based method and a microscope equipped with a thermostatic chamber and a Nikon Biostation System camera. RESULTS: Knockdown of αII-spectrin leads to: modified cell shape; actin cytoskeleton organization with the presence of peripheral actin patches; and decreased formation of stress fibers. Spectrin deficiency affects cell adhesion on laminin and fibronectin and cell motility. This included modification of the localization of adhesion molecules, such as αVß3- and α5-integrins, and organization of adhesion structures, such as focal points. Deficiency of αII-spectrin can also affect the complex mechanism of in vitro capillary tube formation, as demonstrated in a model of angiogenesis. Live imaging revealed that impairment of capillary tube assembly was mainly associated with a significant decrease in cell projection length and stability. αII-spectrin depletion is also associated with significantly decreased expression of three proteins involved in capillary tube formation and assembly: VE-cadherin, MCAM and ß3-integrin. CONCLUSION: Our data confirm the role of αII-spectrin in the control of cell adhesion and spreading. Moreover, our findings further support the participation of αII-spectrin in capillary tube formation in vitro through control of adhesion molecules, such as integrins. This indicates a new function of αII-spectrin in angiogenesis.


Actin Cytoskeleton/metabolism , Capillaries/metabolism , Cell Adhesion/physiology , Endothelial Cells/metabolism , Neovascularization, Physiologic , Spectrin/metabolism , Antigens, CD/metabolism , CD146 Antigen/metabolism , Cadherins/metabolism , Capillaries/growth & development , Cell Adhesion/genetics , Cell Differentiation/genetics , Cell Movement/genetics , Cell Shape , Endothelial Cells/cytology , Fibronectins/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Integrin alpha Chains/metabolism , Integrin beta3/metabolism , Laminin/metabolism , Morphogenesis/genetics , Morphogenesis/physiology , Neovascularization, Physiologic/genetics , RNA, Small Interfering , Spectrin/deficiency , Spectrin/genetics , Stress Fibers/metabolism
14.
Blood ; 135(6): 441-448, 2020 02 06.
Article En | MEDLINE | ID: mdl-31826245

The rare PEL-negative phenotype is one of the last blood groups with an unknown genetic basis. By combining whole-exome sequencing and comparative global proteomic investigations, we found a large deletion in the ABCC4/MRP4 gene encoding an ATP-binding cassette (ABC) transporter in PEL-negative individuals. The loss of PEL expression on ABCC4-CRISPR-Cas9 K562 cells and its overexpression in ABCC4-transfected cells provided evidence that ABCC4 is the gene underlying the PEL blood group antigen. Although ABCC4 is an important cyclic nucleotide exporter, red blood cells from ABCC4null/PEL-negative individuals exhibited a normal guanosine 3',5'-cyclic monophosphate level, suggesting a compensatory mechanism by other erythroid ABC transporters. Interestingly, PEL-negative individuals showed an impaired platelet aggregation, confirming a role for ABCC4 in platelet function. Finally, we showed that loss-of-function mutations in the ABCC4 gene, associated with leukemia outcome, altered the expression of the PEL antigen. In addition to ABCC4 genotyping, PEL phenotyping could open a new way toward drug dose adjustment for leukemia treatment.


Blood Group Antigens/genetics , Multidrug Resistance-Associated Proteins/genetics , Platelet Aggregation , Blood Platelets/cytology , Blood Platelets/metabolism , CRISPR-Cas Systems , Erythroid Cells/cytology , Erythroid Cells/metabolism , Gene Deletion , Humans , Phenotype
15.
J Biol Chem ; 294(41): 14911-14921, 2019 10 11.
Article En | MEDLINE | ID: mdl-31413112

Tumor cell migration depends on the interactions of adhesion proteins with the extracellular matrix. Lutheran/basal cell adhesion molecule (Lu/BCAM) promotes tumor cell migration by binding to laminin α5 chain, a subunit of laminins 511 and 521. Lu/BCAM is a type I transmembrane protein with a cytoplasmic domain of 59 (Lu) or 19 (Lu(v13)) amino acids. Here, using an array of techniques, including site-directed mutagenesis, immunoblotting, FRET, and proximity-ligation assays, we show that both Lu and Lu(v13) form homodimers at the cell surface of epithelial cancer cells. We mapped two small-XXX-small motifs in the transmembrane domain as potential sites for monomers docking and identified three cysteines in the cytoplasmic domain as being critical for covalently stabilizing dimers. We further found that Lu dimerization and phosphorylation of its cytoplasmic domain were concomitantly needed to promote cell migration. We conclude that Lu is the critical isoform supporting tumor cell migration on laminin 521 and that the Lu:Lu(v13) ratio at the cell surface may control the balance between cellular firm adhesion and migration.


Cell Adhesion Molecules/chemistry , Cell Adhesion Molecules/metabolism , Cell Movement/drug effects , Laminin/pharmacology , Lutheran Blood-Group System/chemistry , Lutheran Blood-Group System/metabolism , Protein Multimerization/drug effects , Amino Acid Sequence , Animals , Caco-2 Cells , Dogs , Humans , Madin Darby Canine Kidney Cells , Models, Molecular , Phosphorylation/drug effects , Protein Domains , Protein Structure, Quaternary
16.
Lab Chip ; 18(19): 2975-2984, 2018 09 26.
Article En | MEDLINE | ID: mdl-30168832

The human red blood cell is a biconcave disc of 6-8 × 2 µm that is highly elastic. This capacity to deform enables it to stretch while circulating through narrow capillaries to ensure its main function of gas exchange. Red cell shape and deformability are altered in membrane disorders because of defects in skeletal or membrane proteins affecting protein-protein interactions. Red cell properties are also altered in other pathologies such as sickle cell disease. Sickle cell disease is a genetic hereditary disorder caused by a single point mutation in the ß-globin gene generating sickle haemoglobin (HbS). Hypoxia drives HbS polymerisation that is responsible for red cell sickling and reduced deformability. The main clinical features of sickle cell disease are vaso-occlusive crises and haemolytic anaemia. Foetal haemoglobin (HbF) inhibits HbS polymerisation and positively impacts red cell survival in the circulation but the mechanism through which it exerts this action is not fully characterized. In this study, we designed a microfluidic biochip mimicking the dimensions of human capillaries to measure the impact of repeated mechanical stress on the survival of red cells at the single cell scale under controlled pressure. We show that mechanical stress is a critical parameter underlying intravascular haemolysis in sickle cell disease and that high intracellular levels of HbF protect against lysis. The biochip is a promising tool to address red cell deformability in pathological situations and to screen for molecules positively impacting this parameter in order to improve red cell survival in the circulation.


Anemia, Sickle Cell/blood , Erythrocytes/pathology , Lab-On-A-Chip Devices , Stress, Mechanical , Adolescent , Adult , Biomechanical Phenomena , Child , Child, Preschool , Erythrocyte Deformability , Female , Humans , Male , Middle Aged , Young Adult
17.
Front Med (Lausanne) ; 5: 164, 2018.
Article En | MEDLINE | ID: mdl-29900172

Red blood cells (RBC) ability to circulate is closely related to their surface area-to-volume ratio. A decrease in this ratio induces a decrease in RBC deformability that can lead to their retention and elimination in the spleen. We recently showed that a subpopulation of "small RBC" with reduced projected surface area accumulated upon storage in blood bank concentrates, but data on the volume of these altered RBC are lacking. So far, single cell measurement of RBC volume has remained a challenging task achieved by a few sophisticated methods some being subject to potential artifacts. We aimed to develop a reproducible and ergonomic method to assess simultaneously RBC volume and morphology at the single cell level. We adapted the fluorescence exclusion measurement of volume in nucleated cells to the measurement of RBC volume. This method requires no pre-treatment of the cell and can be performed in physiological or experimental buffer. In addition to RBC volume assessment, brightfield images enabling a precise definition of the morphology and the measurement of projected surface area can be generated simultaneously. We first verified that fluorescence exclusion is precise, reproducible and can quantify volume modifications following morphological changes induced by heating or incubation in non-physiological medium. We then used the method to characterize RBC stored for 42 days in SAG-M in blood bank conditions. Simultaneous determination of the volume, projected surface area and morphology allowed to evaluate the surface area-to-volume ratio of individual RBC upon storage. We observed a similar surface area-to-volume ratio in discocytes (D) and echinocytes I (EI), which decreased in EII (7%) and EIII (24%), sphero-echinocytes (SE; 41%) and spherocytes (S; 47%). If RBC dimensions determine indeed the ability of RBC to cross the spleen, these modifications are expected to induce the rapid splenic entrapment of the most morphologically altered RBC (EIII, SE, and S) and further support the hypothesis of a rapid clearance of the "small RBC" subpopulation by the spleen following transfusion.

19.
Kidney Int ; 93(2): 390-402, 2018 02.
Article En | MEDLINE | ID: mdl-29054531

Ammonium, stemming from renal ammoniagenesis, is a major urinary proton buffer and is excreted along the collecting duct. This process depends on the concomitant secretion of ammonia by the ammonia channel RhCG and of protons by the vacuolar-type proton-ATPase pump. Thus, urinary ammonium content and urinary acidification are tightly linked. However, mice lacking Rhcg excrete more alkaline urine despite lower urinary ammonium, suggesting an unexpected role of Rhcg in urinary acidification. RhCG and the B1 and B2 proton-ATPase subunits could be co-immunoprecipitated from kidney. In ex vivo microperfused cortical collecting ducts (CCD) proton-ATPase activity was drastically reduced in the absence of Rhcg. Conversely, overexpression of RhCG in HEK293 cells resulted in higher proton secretion rates and increased B1 proton-ATPase mRNA expression. However, in kidneys from Rhcg-/- mice the expression of only B1 and B2 subunits was altered. Immunolocalization of proton-ATPase subunits together with immuno-gold detection of the A proton-ATPase subunit showed similar localization and density of staining in kidneys from Rhcg+/+ and Rhcg-/-mice. In order to test for a reciprocal effect of intercalated cell proton-ATPases on Rhcg activity, we assessed Rhcg and proton-ATPase activities in microperfused CCD from Atp6v1b1-/- mice and showed reduced proton-ATPase activity without altering Rhcg activity. Thus, RhCG and proton-ATPase are located within the same cellular protein complex. RhCG may modulate proton-ATPase function and urinary acidification, whereas proton-ATPase activity does not affect RhCG function. This mechanism may help to coordinate ammonia and proton secretion beyond physicochemical driving forces.


Ammonia/urine , Cation Transport Proteins/metabolism , Kidney Tubules, Collecting/enzymology , Membrane Glycoproteins/metabolism , Renal Elimination , Urine/chemistry , Vacuolar Proton-Translocating ATPases/metabolism , Animals , Cation Transport Proteins/deficiency , Cation Transport Proteins/genetics , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Kidney Tubules, Collecting/cytology , Kidney Tubules, Collecting/ultrastructure , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Mice, Knockout , Multiprotein Complexes , Protons , Vacuolar Proton-Translocating ATPases/deficiency , Vacuolar Proton-Translocating ATPases/genetics
...