Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38464015

RESUMEN

Mutations in CLRN1 cause Usher syndrome type IIIA (USH3A), an autosomal recessive disorder characterized by hearing and vision loss, and often accompanied by vestibular balance issues. The identity of the cell types responsible for the pathology and mechanisms leading to vision loss in USH3A remains elusive. To address this, we employed CRISPR/Cas9 technology to delete a large region in the coding and untranslated (UTR) region of zebrafish clrn1. Retina of clrn1 mutant larvae exhibited sensitivity to cell stress, along with age-dependent loss of function and degeneration in the photoreceptor layer. Investigation revealed disorganization in the outer retina in clrn1 mutants, including actin-based structures of the Müller glia and photoreceptor cells. To assess cell-specific contributions to USH3A pathology, we specifically re-expressed clrn1 in either Müller glia or photoreceptor cells. Müller glia re-expression of clrn1 prevented the elevated cell death observed in larval clrn1 mutant zebrafish exposed to high-intensity light. Notably, the degree of phenotypic rescue correlated with the level of Clrn1 re-expression. Surprisingly, high levels of Clrn1 expression enhanced cell death in both wild-type and clrn1 mutant animals. However, rod- or cone-specific Clrn1 re-expression did not rescue the extent of cell death. Taken together, our findings underscore three crucial insights. First, clrn1 mutant zebrafish exhibit key pathological features of USH3A; second, Clrn1 within Müller glia plays a pivotal role in photoreceptor maintenance, with its expression requiring controlled regulation; third, the reliance of photoreceptors on Müller glia suggests a structural support mechanism, possibly through direct interactions between Müller glia and photoreceptors mediated in part by Clrn1 protein.

2.
Arterioscler Thromb Vasc Biol ; 43(7): e231-e237, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37128914

RESUMEN

BACKGROUND: The goal of this study was to identify and characterize cell-cell interactions that facilitate endothelial tip cell fusion downstream of BMP (bone morphogenic protein)-mediated venous plexus formation. METHODS: High resolution and time-lapse imaging of transgenic reporter lines and loss-of-function studies were carried out to study the involvement of mesenchymal stromal cells during venous angiogenesis. RESULTS: BMP-responsive stromal cells facilitate timely and precise fusion of venous tip cells during developmental angiogenesis. CONCLUSIONS: Stromal cells are required for anastomosis of venous tip cells in the embryonic caudal hematopoietic tissue.


Asunto(s)
Proteínas Morfogenéticas Óseas , Células Madre Mesenquimatosas , Animales , Fusión Celular , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Animales Modificados Genéticamente , Comunicación Celular , Células del Estroma/metabolismo
3.
Exp Eye Res ; 225: 109219, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35985530

RESUMEN

Children that undergo intraocular surgery have an exaggerated postoperative response compared to adults that can result in significant postoperative challenges and reduced post-operative visual acuity. Rabbits were used as an animal model for investigating aging differences, treatment options, and surgical techniques for anterior chamber surgical interventions due to similarities in anterior chamber size and decreasing postoperative response with age. In our study, juvenile and adult rabbits underwent lensectomy with intraocular lens (IOL) insertion to determine how ocular RNA transcripts and proteins change with age. Rabbits underwent lensectomy with IOL insertion, and aqueous humor (AH) was collected immediately prior to surgery and at the peak of the postoperative response on post-operative day 3. Proteins related to coagulation and inflammation were assessed using targeted mass spectrometry. In addition, the cornea and iris/ciliary body tissues were dissected, and transcripts analyzed using RNA sequencing. While clinically, juvenile rabbits have greater fibrin formation following intraocular surgery compared to older rabbits, this change does not appear to be related to relative abundance levels of coagulation and inflammatory proteins in the AH. Gene transcript levels from a variety of immune response and inflammatory pathways reflected significant increases when comparing operated to unoperated ocular tissues, indicating the significant impact that surgery has on each ocular structure. This work further advances our understanding of how the rabbit eye proteomic and transcriptomic changes in response to surgery with aging, as we seek to ultimately identify the mechanisms for the exaggerated postoperative responses after pediatric intraocular surgery.


Asunto(s)
Lentes Intraoculares , Transcriptoma , Animales , Conejos , Proteómica , Cuerpo Ciliar , Envejecimiento
4.
Invest Ophthalmol Vis Sci ; 62(15): 13, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34913948

RESUMEN

Purpose: Proper refractive development of the eye, termed emmetropization, is critical for focused vision and is impacted by both genetic determinants and several visual environment factors. Improper emmetropization caused by genetic variants can lead to congenital hyperopia, which is characterized by small eyes and relatively short ocular axial length. To date, variants in only four genes have been firmly associated with human hyperopia, one of which is MFRP. Zebrafish mfrp mutants also have hyperopia and, similar to reports in mice, exhibit increased macrophage recruitment to the retina. The goal of this research was to examine the effects of macrophage ablation on emmetropization and mfrp-related hyperopia. Methods: We utilized a chemically inducible, cell-specific ablation system to deplete macrophages in both wild-type and mfrp mutant zebrafish. Spectral-domain optical coherence tomography was then used to measure components of the eye and determine relative refractive state. Histology, immunohistochemistry, and transmission electron microscopy were used to further study the eyes. Results: Although macrophage ablation does not cause significant changes to the relative refractive state of wild-type zebrafish, macrophage ablation in mfrp mutants significantly exacerbates their hyperopic phenotype, resulting in a relative refractive error 1.3 times higher than that of non-ablated mfrp siblings. Conclusions: Genetic inactivation of mfrp leads to hyperopia, as well as abnormal accumulation of macrophages in the retina. Ablation of the mpeg1-positive macrophage population exacerbates the hyperopia, suggesting that macrophages may be recruited in an effort help preserve emmetropization and ameliorate hyperopia.


Asunto(s)
Proteínas del Ojo/genética , Hiperopía/fisiopatología , Macrófagos/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Antiinfecciosos/farmacología , Apoptosis , Proliferación Celular , Colágeno/metabolismo , Colágeno/ultraestructura , Emetropía/fisiología , Hiperopía/diagnóstico por imagen , Hiperopía/genética , Inmunohistoquímica , Metronidazol/farmacología , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Fenotipo , Refracción Ocular , Esclerótica/metabolismo , Esclerótica/ultraestructura , Tomografía de Coherencia Óptica , Pez Cebra
5.
Transl Vis Sci Technol ; 9(10): 18, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32983626

RESUMEN

Purpose: To observe and characterize cone degeneration and regeneration in a selective metronidazole-mediated ablation model of ultraviolet-sensitive (UV) cones in zebrafish using in vivo optical coherence tomography (OCT) imaging. Methods: Twenty-six sws1:nfsB-mCherry;sws2:eGFP zebrafish were imaged with OCT, treated with metronidazole to selectively kill UV cones, and imaged at 1, 3, 7, 14, 28, or 56 days after ablation. Regions 200 × 200 µm were cropped from volume OCT scans to count individual UV cones before and after ablation. Fish eyes were fixed, and immunofluorescence staining was used to corroborate cone density measured from OCT and to track monocyte response. Results: Histology shows significant loss of UV cones after metronidazole treatment with a slight increase in observable blue cone density one day after treatment (Kruskal, Wallis, P = 0.0061) and no significant change in blue cones at all other timepoints. Regenerated UV cones measured from OCT show significantly lower density than pre-cone-ablation at 14, 28, and 56 days after ablation (analysis of variance, P < 0.01, P < 0.0001, P < 0.0001, respectively, 15.9% of expected nonablated levels). Histology shows significant changes to monocyte morphology (mixed-effects analysis, P < 0.0001) and retinal position (mixed-effects analysis, P < 0.0001). Conclusions: OCT can be used to observe loss of individual cones selectively ablated by metronidazole prodrug activation and to quantify UV cone loss and regeneration in zebrafish. OCT images also show transient changes to the blue cone mosaic and inner retinal layers that occur concomitantly with selective UV cone ablation. Translational Relevance: Profiling cone degeneration and regeneration using in vivo imaging enables experiments that may lead to a better understanding of cone regeneration in vertebrates.


Asunto(s)
Células Fotorreceptoras Retinianas Conos , Pez Cebra , Animales , Pruebas Diagnósticas de Rutina , Regeneración , Tomografía de Coherencia Óptica
6.
Hum Mol Genet ; 29(16): 2723-2735, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32720677

RESUMEN

The Forkhead Box C1 (FOXC1) gene encodes a forkhead/winged helix transcription factor involved in embryonic development. Mutations in this gene cause dysgenesis of the anterior segment of the eye, most commonly Axenfeld-Rieger syndrome (ARS), often with other systemic features. The developmental mechanisms and pathways regulated by FOXC1 remain largely unknown. There are two conserved orthologs of FOXC1 in zebrafish, foxc1a and foxc1b. To further examine the role of FOXC1 in vertebrates, we generated foxc1a and foxc1b single knockout zebrafish lines and bred them to obtain various allelic combinations. Three genotypes demonstrated visible phenotypes: foxc1a-/- single homozygous and foxc1-/- double knockout homozygous embryos presented with similar characteristics comprised of severe global vascular defects and early lethality, as well as microphthalmia, periocular edema and absence of the anterior chamber of the eye; additionally, fish with heterozygous loss of foxc1a combined with homozygosity for foxc1b (foxc1a+/-;foxc1b-/-) demonstrated craniofacial defects, heart anomalies and scoliosis. All other single and combined genotypes appeared normal. Analysis of foxc1 expression detected a significant increase in foxc1a levels in homozygous and heterozygous mutant eyes, suggesting a mechanism for foxc1a upregulation when its function is compromised; interestingly, the expression of another ARS-associated gene, pitx2, was responsive to the estimated level of wild-type Foxc1a, indicating a possible role for this protein in the regulation of pitx2 expression. Altogether, our results support a conserved role for foxc1 in the formation of many organs, consistent with the features observed in human patients, and highlight the importance of correct FOXC1/foxc1 dosage for vertebrate development.


Asunto(s)
Segmento Anterior del Ojo/anomalías , Anomalías del Ojo/genética , Enfermedades Hereditarias del Ojo/genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética , Alelos , Animales , Segmento Anterior del Ojo/patología , Desarrollo Embrionario/genética , Anomalías del Ojo/patología , Enfermedades Hereditarias del Ojo/patología , Dosificación de Gen/genética , Regulación del Desarrollo de la Expresión Génica/genética , Genotipo , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Heterocigoto , Homocigoto , Humanos , Mutación/genética , Escoliosis/genética , Escoliosis/patología , Pez Cebra/genética
7.
Front Cell Dev Biol ; 8: 608112, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33634099

RESUMEN

Interkinetic nuclear migration (IKNM) is the process in which pseudostratified epithelial nuclei oscillate from the apical to basal surface and in phase with the mitotic cycle. In the zebrafish retina, neuroepithelial retinal progenitor cells (RPCs) increase Notch activity with apical movement of the nuclei, and the depth of nuclear migration correlates with the probability that the next cell division will be neurogenic. This study focuses on the mechanisms underlying the relationships between IKNM, cell signaling, and neurogenesis. In particular, we have explored the role IKNM has on endosome biology within RPCs. Through genetic manipulation and live imaging in zebrafish, we find that early (Rab5-positive) and recycling (Rab11a-positive) endosomes polarize in a dynamic fashion within RPCs and with reference to nuclear position. Functional analyses suggest that dynamic polarization of recycling endosomes and their activity within the neuroepithelia modulates the subcellular localization of Crb2a, consequently affecting multiple signaling pathways that impact neurogenesis including Notch, Hippo, and Wnt activities. As nuclear migration is heterogenous and asynchronous among RPCs, Rab11a-affected signaling within the neuroepithelia is modulated in a differential manner, providing mechanistic insight to the correlation of IKNM and selection of RPCs to undergo neurogenesis.

8.
Front Cell Dev Biol ; 7: 167, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31457013

RESUMEN

LRP2 is a large transmembrane receptor expressed on absorptive epithelia where it binds many extracellular ligands to control several signaling pathways. Mutations in LRP2 are associated with buphthalmic eye enlargement, myopia and other non-ocular symptoms. Though studies have clearly shown that absence of LRP2 causes these phenotypes, and that overexpression of individual LRP2 domains can exacerbate eye enlargement caused by the absence of Lrp2, the relationship between soluble LRP2 fragments and full-length membrane-bound LRP2 is not completely understood. Here we use a CRISPR/Cas9 approach to insert a stop codon cassette into zebrafish lrp2 to prematurely truncate the protein before its transmembrane domain while leaving the entire extracellular domain intact. The resulting mutant line will be a useful tool for examining Lrp2 function in the eye, and testing hypotheses regarding its extracellular processing.

9.
Transl Vis Sci Technol ; 7(5): 4, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30197836

RESUMEN

PURPOSE: To demonstrate and validate that photothermal optical coherence tomography (PT-OCT) can image melanin in the retinal pigment epithelium (RPE) and can observe light-driven melanosome translocation in the zebrafish retina. METHODS: A commercial spectral domain OCT system was modified to perform both OCT and PT-OCT. Four adult tyrosinase-mosaic zebrafish with varying levels of melanin expression across their retinas were imaged, and the PT-OCT signal for pigmented and nonpigmented regions were compared. Wild-type dark-adapted (n = 11 fish) and light-adapted (n = 10 fish) zebrafish were also imaged with OCT and PT-OCT. Longitudinal reflectivity and absorption profiles were generated from B-scans to compare the melanin distribution between the two groups. RESULTS: A significant increase in PT-OCT signal (P < 0.0001, Student's t-test) was observed in pigmented regions of interest (ROI) compared to nonpigmented ROIs in the tyrosinase-mosaic zebrafish, which confirms the PT-OCT signal is specific to melanin in the eye. A significant increase in PT-OCT signal intensity (P < 0.0001, Student's t-test) was also detected in the light-adapted wild-type zebrafish group compared to the dark-adapted group. Additionally, light-adapted zebrafish display more distinct melanin banding patterns than do dark-adapted zebrafish in PT-OCT B-scans. CONCLUSIONS: PT-OCT can detect different levels of melanin absorption and characterize pigment distribution in the zebrafish retina, including intracellular changes due to light-driven melanosome translocation within the RPE. TRANSLATIONAL RELEVANCE: PT-OCT could quantify changes in pigmentation that occur in retinal diseases. The functional information provided by PT-OCT may also enable a better understanding of the anatomical features within conventional OCT images.

10.
Adv Exp Med Biol ; 1074: 465-471, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29721977

RESUMEN

This review discusses the therapeutic potential of brain-derived neurotrophic factor (BDNF) for retinal degeneration. BDNF, nerve growth factor (NGF), neurotrophin 3 (NT-3) and NT-4/NT-5 belong to the neurotrophin family. These neuronal modulators activate a common receptor and a specific tropomyosin-related kinase (Trk) receptor. BDNF was identified as a photoreceptor protectant in models of retinal degeneration as early as 1992. However, development of effective therapeutics that exploit this pathway has been difficult due to challenges in sustaining therapeutic levels in the retina.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Degeneración Retiniana/tratamiento farmacológico , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/farmacocinética , Supervivencia Celular/efectos de los fármacos , Dependovirus/genética , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Terapia Genética , Vectores Genéticos/uso terapéutico , Humanos , Ratones , Fármacos Neuroprotectores/farmacocinética , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Ratas , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/uso terapéutico , Degeneración Retiniana/prevención & control , Degeneración Retiniana/terapia
12.
Transl Vis Sci Technol ; 6(2): 8, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28392975

RESUMEN

PURPOSE: We assessed the effect of melanin on the appearance of hyperreflective outer retinal bands in optical coherence tomography (OCT) images. METHODS: A total of 23 normal subjects and 51 patients with albinism were imaged using the Bioptigen high-resolution spectral-domain OCT. In addition, three wild type, three albino (slc45a2b4/b4 ), and eight tyrosinase mosaic zebrafish were imaged with the hand-held Bioptigen Envisu R2200 OCT. To identify pigmented versus nonpigmented regions in the tyrosinase mosaic zebrafish, en face summed volume projections of the retinal pigment epithelium (RPE) were created from volume scans. Longitudinal reflectivity profiles were generated from B-scans to assess the width and maximum intensity of the RPE band in fish, or the presence of one or two RPE/Bruch's membrane (BrM) bands in humans. RESULTS: The foveal RPE/BrM appeared as two bands in 71% of locations in patients with albinism and 45% of locations in normal subjects (P = 0.0003). Pigmented zebrafish retinas had significantly greater RPE reflectance, and pigmented regions of mosaic zebrafish also had significantly broader RPE bands than all other groups. CONCLUSIONS: The hyperreflective outer retinal bands in OCT images are highly variable in appearance. We showed that melanin is a major contributor to the intensity and width of the RPE band on OCT. One should use caution in extrapolating findings from OCT images of one or even a few individuals to define the absolute anatomic correlates of the hyperreflective outer retinal bands in OCT images. TRANSLATIONAL RELEVANCE: Melanin affects the appearance of the outer retinal bands in OCT images. Use of animal models may help dissect the anatomic correlates of the complex reflective signals in OCT retinal images.

13.
Invest Ophthalmol Vis Sci ; 57(15): 6805-6814, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28002843

RESUMEN

Purpose: Mutations in membrane frizzled-related protein (MFRP) are associated with nanophthalmia, hyperopia, foveoschisis, irregular patches of RPE atrophy, and optic disc drusen in humans. Mouse mfrp mutants show retinal degeneration but no change in eye size or refractive state. The goal of this work was to generate zebrafish mutants to investigate the loss of Mfrp on eye size and refractive state, and to characterize other phenotypes observed. Methods: Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 methods were used to generate multiple frameshift mutations in zebrafish mfrp causing premature translational stops in Mfrp. Spectral-domain optical coherence tomography (SD-OCT) was used to measure eye metrics and refractive state, and immunohistochemistry was used to study adult eyes. Gene expression levels were measured using quantitative PCR. Results: Zebrafish Mfrp was shown to localize to apical and basal regions of RPE cells, as well as the ciliary marginal zone. Loss of Mfrp in mutant zebrafish was verified histologically. Zebrafish eyes that were mfrp mutant showed reduced axial length causing hyperopia, RPE folding, and macrophages were observed subretinally. Visual acuity was reduced in mfrp mutant animals. Conclusions: Mutation of zebrafish mfrp results in hyperopia with subretinal macrophage infiltration, phenocopying aspects of human and mouse Mfrp deficiency. These mutant zebrafish will be useful in studying the onset and progression of Mfrp-related nanophthalmia, the cues that initiate the recruitment of macrophages, and the mechanisms of Mfrp function.


Asunto(s)
Glicoproteínas/genética , Hiperopía/genética , Macrófagos/patología , Microftalmía/genética , Mutación , Degeneración Retiniana/genética , Epitelio Pigmentado de la Retina/patología , Animales , ADN/genética , Análisis Mutacional de ADN , Glicoproteínas/metabolismo , Humanos , Hiperopía/metabolismo , Hiperopía/patología , Péptidos y Proteínas de Señalización Intracelular , Microftalmía/metabolismo , Microftalmía/patología , Fenotipo , Reacción en Cadena de la Polimerasa , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Epitelio Pigmentado de la Retina/metabolismo , Tomografía de Coherencia Óptica , Pez Cebra
14.
Vis Neurosci ; 33: E011, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-28177275

RESUMEN

Zebrafish (Danio rerio) provide many advantages as a model organism for studying ocular disease and development, and there is great interest in the ability to non-invasively assess their photoreceptor mosaic. Despite recent applications of scanning light ophthalmoscopy, fundus photography, and gonioscopy to in vivo imaging of the adult zebrafish eye, current techniques either lack accurate scaling information (limiting quantitative analyses) or require euthanizing the fish (precluding longitudinal analyses). Here we describe improved methods for imaging the adult zebrafish retina using spectral domain optical coherence tomography (OCT). Transgenic fli1:eGFP zebrafish were imaged using the Bioptigen Envisu R2200 broadband source OCT with a 12-mm telecentric probe to measure axial length and a mouse retina probe to acquire retinal volume scans subtending 1.2 × 1.2 mm nominally. En face summed volume projections were generated from the volume scans using custom software that allows the user to create contours tailored to specific retinal layer(s) of interest. Following imaging, the eyes were dissected for ex vivo fluorescence microscopy, and measurements of blood vessel branch points were compared to those made from the en face OCT images to determine the OCT lateral scale as a function of axial length. Using this scaling model, we imaged the photoreceptor layer of five wild-type zebrafish and quantified the density and packing geometry of the UV cone submosaic. Our in vivo cone density measurements agreed with measurements from previously published histology values. The method presented here allows accurate, quantitative assessment of cone structure in vivo and will be useful for longitudinal studies of the zebrafish cone mosaics.


Asunto(s)
Células Fotorreceptoras Retinianas Conos/citología , Tomografía de Coherencia Óptica , Pez Cebra/anatomía & histología , Animales , Animales Modificados Genéticamente , Proteínas Fluorescentes Verdes/genética , Microscopía Fluorescente , Pez Cebra/genética
15.
Annu Rev Vis Sci ; 1: 125-153, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-28532376

RESUMEN

Visual defects affect a large proportion of humanity, have a significant negative impact on quality of life, and cause significant economic burden. The wide variety of visual disorders and the large number of gene mutations responsible require a flexible animal model system to carry out research for possible causes and cures for the blinding conditions. With eyes similar to humans in structure and function, zebrafish are an important vertebrate model organism that is being used to study genetic and environmental eye diseases, including myopia, glaucoma, retinitis pigmentosa, ciliopathies, albinism, and diabetes. This review details the use of zebrafish in modeling human ocular diseases.

16.
PLoS One ; 9(10): e110699, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25334040

RESUMEN

Refractive errors in vision can be caused by aberrant axial length of the eye, irregular corneal shape, or lens abnormalities. Causes of eye length overgrowth include multiple genetic loci, and visual parameters. We evaluate zebrafish as a potential animal model for studies of the genetic, cellular, and signaling basis of emmetropization and myopia. Axial length and other eye dimensions of zebrafish were measured using spectral domain-optical coherence tomography (SD-OCT). We used ocular lens and body metrics to normalize and compare eye size and relative refractive error (difference between observed retinal radial length and controls) in wild-type and lrp2 zebrafish. Zebrafish were dark-reared to assess effects of visual deprivation on eye size. Two relative measurements, ocular axial length to body length and axial length to lens diameter, were found to accurately normalize comparisons of eye sizes between different sized fish (R2=0.9548, R2=0.9921). Ray-traced focal lengths of wild-type zebrafish lenses were equal to their retinal radii, while lrp2 eyes had longer retinal radii than focal lengths. Both genetic mutation (lrp2) and environmental manipulation (dark-rearing) caused elongated eye axes. lrp2 mutants had relative refractive errors of -0.327 compared to wild-types, and dark-reared wild-type fish had relative refractive errors of -0.132 compared to light-reared siblings. Therefore, zebrafish eye anatomy (axial length, lens radius, retinal radius) can be rapidly and accurately measured by SD-OCT, facilitating longitudinal studies of regulated eye growth and emmetropization. Specifically, genes homologous to human myopia candidates may be modified, inactivated or overexpressed in zebrafish, and myopia-sensitizing conditions used to probe gene-environment interactions. Our studies provide foundation for such investigations into genetic contributions that control eye size and impact refractive errors.


Asunto(s)
Longitud Axial del Ojo/patología , Ojo/patología , Miopía/diagnóstico , Retina/patología , Animales , Modelos Animales de Enfermedad , Femenino , Interacción Gen-Ambiente , Humanos , Cristalino , Mutación , Miopía/genética , Miopía/patología , Tomografía de Coherencia Óptica , Pez Cebra
17.
Exp Eye Res ; 108: 120-8, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23328348

RESUMEN

Cone-rod dystrophy 6 (CORD6) is an inherited blindness that presents with defective cone photoreceptor function in childhood, followed by loss of rod function. CORD6 results from mutations in GUCY2D, the human gene encoding retinal guanylate cyclase 1 (RETGC-1). RETGC-1 functions in phototransduction, synthesising cGMP to open ion channels in photoreceptor outer segments. As there is limited histopathological data on the CORD6 retina, our goal was to generate a CORD6 model by expressing mutant human RETGC-1 in zebrafish cone photoreceptors and to investigate effects on retinal morphology and function. cDNAs encoding wildtype and mutant (E837D R838S) RETGC-1 were cloned under the control of the cone-specific gnat2 promoter and microinjected into zebrafish embryos to generate transgenic lines. RETGC-1 mRNA expression in zebrafish eyes was confirmed by RT-PCR. Fluorescent microscopy analysed retinal morphology and visual behaviour was quantified by the optokinetic response (OKR). Stable transgenic lines expressing mutant or wildtype human RETGC-1 in zebrafish eyes were generated. OKR assays of 5-day-old larvae did not uncover any deficits in visual behaviour. However, transgenic (E837D R838S) RETGC-1 expression results in aberrant cone morphology and a reduced cone density. A reduction in the number of photoreceptor nuclei, the thickness of the outer nuclear layer and the labelling of rod outer segments, particularly in the central retina, was evident. Expression of mutant human RETGC-1 leads to a retinal phenotype that includes aberrant photoreceptor morphology and a reduced number of photoreceptors. This phenotype likely explains the compromised visual function, characteristic of CORD6.


Asunto(s)
Guanilato Ciclasa/metabolismo , Receptores de Superficie Celular/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Retinitis Pigmentosa/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Regulación del Desarrollo de la Expresión Génica , Genotipo , Guanilato Ciclasa/genética , Proteínas de Unión al GTP Heterotriméricas/genética , Humanos , Larva/metabolismo , Microinyecciones , Microscopía Fluorescente , Mutación , Nistagmo Optoquinético/genética , Fenotipo , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Superficie Celular/genética , Células Fotorreceptoras Retinianas Conos/patología , Células Fotorreceptoras Retinianas Bastones/patología , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Pez Cebra/anomalías , Pez Cebra/genética
18.
Hepatology ; 56(6): 2163-71, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22653811

RESUMEN

UNLABELLED: Elevated levels of low-density lipoprotein cholesterol (LDL-C) in plasma are a major contributor to cardiovascular disease, which is the leading cause of death worldwide. Genome-wide association studies (GWAS) have identified 95 loci that associate with control of lipid/cholesterol metabolism. Although GWAS results are highly provocative, direct analyses of the contribution of specific allelic variations in regulating LDL-C has been challenging due to the difficulty in accessing appropriate cells from affected patients. The primary cell type responsible for controlling cholesterol and lipid flux is the hepatocyte. Recently, we have shown that cells with hepatocyte characteristics can be generated from human induced pluripotent stem cells (iPSCs). This finding raises the possibility of using patient-specific iPSC-derived hepatocytes to study the functional contribution of GWAS loci in regulating lipid metabolism. To test the validity of this approach, we produced iPSCs from JD a patient with mutations in the low-density lipoprotein receptor (LDLR) gene that result in familial hypercholesterolemia (FH). We demonstrate that (1) hepatocytes can be efficiently generated from FH iPSCs; (2) in contrast to control cells, FH iPSC-derived hepatocytes are deficient in LDL-C uptake; (3) control but not FH iPSC-derived hepatocytes increase LDL uptake in response to lovastatin; and (4) FH iPSC-derived hepatocytes display a marked elevation in secretion of lipidated apolipoprotein B-100. CONCLUSION: Cumulatively, these findings demonstrate that FH iPSC-derived hepatocytes recapitulate the complex pathophysiology of FH in culture. These results also establish that patient-specific iPSC-derived hepatocytes could be used to definitively determine the functional contribution of allelic variation in regulating lipid and cholesterol metabolism and could potentially provide a platform for the identification of novel treatments of cardiovascular disease. (HEPATOLOGY 2012).


Asunto(s)
Hepatocitos/metabolismo , Hipercolesterolemia/genética , Lipoproteínas LDL/metabolismo , Células Madre Pluripotentes/fisiología , Receptores de LDL/genética , Adolescente , Alelos , Anticolesterolemiantes/farmacología , Apolipoproteína B-100/metabolismo , Diferenciación Celular , Células Cultivadas , LDL-Colesterol/metabolismo , Fibroblastos/fisiología , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Hepatocitos/efectos de los fármacos , Humanos , Hipercolesterolemia/fisiopatología , Lovastatina/farmacología , Masculino , Mutación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética
19.
PLoS Genet ; 7(2): e1001310, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21379331

RESUMEN

The glaucomas comprise a genetically complex group of retinal neuropathies that typically occur late in life and are characterized by progressive pathology of the optic nerve head and degeneration of retinal ganglion cells. In addition to age and family history, other significant risk factors for glaucoma include elevated intraocular pressure (IOP) and myopia. The complexity of glaucoma has made it difficult to model in animals, but also challenging to identify responsible genes. We have used zebrafish to identify a genetically complex, recessive mutant that shows risk factors for glaucoma including adult onset severe myopia, elevated IOP, and progressive retinal ganglion cell pathology. Positional cloning and analysis of a non-complementing allele indicated that non-sense mutations in low density lipoprotein receptor-related protein 2 (lrp2) underlie the mutant phenotype. Lrp2, previously named Megalin, functions as an endocytic receptor for a wide-variety of bioactive molecules including Sonic hedgehog, bone morphogenic protein 4, retinol-binding protein, vitamin D-binding protein, and apolipoprotein E, among others. Detailed phenotype analyses indicated that as lrp2 mutant fish age, many individuals--but not all--develop high IOP and severe myopia with obviously enlarged eye globes. This results in retinal stretch and prolonged stress to retinal ganglion cells, which ultimately show signs of pathogenesis. Our studies implicate altered Lrp2-mediated homeostasis as important for myopia and other risk factors for glaucoma in humans and establish a new genetic model for further study of phenotypes associated with this disease.


Asunto(s)
Ojo/patología , Glaucoma/complicaciones , Glaucoma/genética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Mutación/genética , Miopía/complicaciones , Miopía/genética , Proteínas de Pez Cebra/genética , Envejecimiento/patología , Secuencia de Aminoácidos , Animales , Apoptosis , Axones/patología , Secuencia de Bases , Recuento de Células , Proliferación Celular , Modelos Animales de Enfermedad , Glaucoma/fisiopatología , Hidroftalmía/complicaciones , Presión Intraocular , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/química , Datos de Secuencia Molecular , Miopía/fisiopatología , Disco Óptico/patología , Disco Óptico/ultraestructura , Tamaño de los Órganos , Fenotipo , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Factores de Riesgo , Estrés Fisiológico/genética , Regulación hacia Arriba , Pez Cebra/genética , Proteínas de Pez Cebra/química
20.
Dev Dyn ; 240(3): 712-22, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21337469

RESUMEN

Bone morphogenic protein (BMP) signaling is fundamental to development, injury response, and homeostasis. We have developed transgenic zebrafish that report Smad-mediated BMP signaling in embryos and adults. These lines express either enhanced green fluorescent protein (eGFP), destabilized eGFP, or destabilized Kusabira Orange 2 (KO2) under the well-characterized BMP Response Element (BRE). These fluorescent proteins were found to be expressed dynamically in regions of known BMP signaling including the developing tail bud, hematopoietic lineage, dorsal eye, brain structures, heart, jaw, fins, and somites, as well as other tissues. Responsiveness to changes in BMP signaling was confirmed by observing fluorescence after activation in an hsp70:bmp2b transgenic background or by inhibition in an hsp70:nog3 background. We further demonstrated faithful reportage by the BRE transgenic lines following chemical repression of BMP signaling using an inhibitor of BMP receptor activity, dorsomorphin. Overall, these lines will serve as valuable tools to explore the mechanisms and regulation of BMP signal during embryogenesis, in tissue maintenance, and during disease.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Smad/metabolismo , Animales , Animales Modificados Genéticamente , Inmunohistoquímica , Microscopía Fluorescente , Elementos de Respuesta/genética , Elementos de Respuesta/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...