Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Hazard Mater ; 470: 134236, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613959

RESUMEN

Organophosphorus compounds or organophosphates (OPs) are widely used as flame retardants, plasticizers, lubricants and pesticides. This contributes to their ubiquitous presence in the environment and to the risk of human exposure. The persistence of OPs and their bioaccumulative characteristics raise serious concerns regarding environmental and human health impacts. To address the need for safer OPs, this study uses a New Approach Method (NAM) to analyze the neurotoxicity pattern of 42 OPs. The NAM consists of a 4-step process that combines computational modeling with in vitro and in vivo experimental studies. Using spherical harmonic-based cluster analysis, the OPs were grouped into four main clusters. Experimental data and quantitative structure-activity relationships (QSARs) analysis were used in conjunction to provide information on the neurotoxicity profile of each group. Results showed that one of the identified clusters had a favorable safety profile, which may help identify safer OPs for industrial applications. In addition, the 3D-computational analysis of each cluster was used to identify meta-molecules with specific 3D features. Toxicity was found to correspond to the level of phosphate surface accessibility. Substances with conformations that minimize phosphate surface accessibility caused less neurotoxic effect. This multi-assay NAM could be used as a guide for the classification of OP toxicity, helping to minimize the health and environmental impacts of OPs, and providing rapid support to the chemical regulators, whilst reducing reliance on animal testing.


Asunto(s)
Organofosfatos , Animales , Organofosfatos/toxicidad , Relación Estructura-Actividad Cuantitativa , Compuestos Organofosforados/toxicidad , Análisis por Conglomerados , Humanos , Síndromes de Neurotoxicidad/etiología
2.
Neurotoxicology ; 102: 48-57, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552718

RESUMEN

Developmental neurotoxicity (DNT) is not routinely evaluated in chemical risk assessment because current test paradigms for DNT require the use of mammalian models which are ethically controversial, expensive, and resource demanding. Consequently, efforts have focused on revolutionizing DNT testing through affordable novel alternative methods for risk assessment. The goal is to develop a DNT in vitro test battery amenable to high-throughput screening (HTS). Currently, the DNT in vitro test battery consists primarily of human cell-based assays because of their immediate relevance to human health. However, such cell-based assays alone are unable to capture the complexity of a developing nervous system. Whole organismal systems that qualify as 3 R (Replace, Reduce and Refine) models are urgently needed to complement cell-based DNT testing. These models can provide the necessary organismal context and be used to explore the impact of chemicals on brain function by linking molecular and/or cellular changes to behavioural readouts. The nematode Caenorhabditis elegans, the planarian Dugesia japonica, and embryos of the zebrafish Danio rerio are all suited to low-cost HTS and each has unique strengths for DNT testing. Here, we review the strengths and the complementarity of these organisms in a novel, integrative context and highlight how they can augment current cell-based assays for more comprehensive and robust DNT screening of chemicals. Considering the limitations of all in vitro test systems, we discuss how a smart combinatory use of these systems will contribute to a better human relevant risk assessment of chemicals that considers the complexity of the developing brain.


Asunto(s)
Encéfalo , Caenorhabditis elegans , Síndromes de Neurotoxicidad , Pruebas de Toxicidad , Animales , Síndromes de Neurotoxicidad/etiología , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Pruebas de Toxicidad/métodos , Caenorhabditis elegans/efectos de los fármacos , Humanos , Pez Cebra , Planarias/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Alternativas a las Pruebas en Animales/métodos , Medición de Riesgo , Ensayos Analíticos de Alto Rendimiento
3.
Proc Biol Sci ; 291(2017): 20232123, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38378148

RESUMEN

Hydra has a tubular bilayered epithelial body column with a dome-shaped head on one end and a foot on the other. Hydra lacks a permanent mouth: its head epithelium is sealed. Upon neuronal activation, a mouth opens at the apex of the head which can exceed the body column diameter in seconds, allowing Hydra to ingest prey larger than itself. While the kinematics of mouth opening are well characterized, the underlying mechanism is unknown. We show that Hydra mouth opening is generated by independent local contractions that require tissue-level coordination. We model the head epithelium as an active viscoelastic nonlinear spring network. The model reproduces the size, timescale and symmetry of mouth opening. It shows that radial contractions, travelling inwards from the outer boundary of the head, pull the mouth open. Nonlinear elasticity makes mouth opening larger and faster, contrary to expectations. The model correctly predicts changes in mouth shape in response to external forces. By generating innervated : nerve-free chimera in experiments and simulations, we show that nearest-neighbour mechanical signalling suffices to coordinate mouth opening. Hydra mouth opening shows that in the absence of long-range chemical or neuronal signals, short-range mechanical coupling is sufficient to produce long-range order in tissue deformations.


Asunto(s)
Hydra , Animales , Hydra/fisiología , Boca/fisiología , Epitelio , Fenómenos Biomecánicos , Neuronas
4.
Front Toxicol ; 5: 1200881, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37435546

RESUMEN

Introduction: Glyphosate is a widely used, non-selective herbicide. Glyphosate and glyphosate-based herbicides (GBHs) are considered safe for non-target organisms and environmentally benign at currently allowed environmental exposure levels. However, their increased use in recent years has triggered questions about possible adverse outcomes due to low dose chronic exposure in animals and humans. While the toxicity of GBHs has primarily been attributed to glyphosate, other largely unstudied components of GBHs may be inherently toxic or could act synergistically with glyphosate. Thus, comparative studies of glyphosate and GBHs are needed to parse out their respective toxicity. Methods: We performed such a comparative screen using pure glyphosate and two popular GBHs at the same glyphosate acid equivalent concentrations in the freshwater planarian Dugesia japonica. This planarian has been shown to be a useful model for both ecotoxicology and neurotoxicity/developmental neurotoxicity studies. Effects on morphology and various behavioral readouts were obtained using an automated screening platform, with assessments on day 7 and day 12 of exposure. Adult and regenerating planarians were screened to allow for detection of developmentally selective effects. Results: Both GBHs were more toxic than pure glyphosate. While pure glyphosate induced lethality at 1 mM and no other effects, both GBHs induced lethality at 316 µM and sublethal behavioral effects starting at 31.6 µM in adult planarians. These data suggest that glyphosate alone is not responsible for the observed toxicity of the GBHs. Because these two GBHs also include other active ingredients, namely diquat dibromide and pelargonic acid, respectively, we tested whether these compounds were responsible for the observed effects. Screening of the equivalent concentrations of pure diquat dibromide and pure pelargonic acid revealed that the toxicity of either GBH could not be explained by the active ingredients alone. Discussion: Because all compounds induced toxicity at concentrations above allowed exposure levels, our data indicates that glyphosate/GBH exposure is not an ecotoxicological concern for D. japonica planarians. Developmentally selective effects were not observed for all compounds. Together, these data demonstrate the usefulness of high throughput screening in D. japonica planarians for assessing various types of toxicity, especially for comparative studies of several chemicals across different developmental stages.

5.
Integr Comp Biol ; 63(6): 1422-1441, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-37339912

RESUMEN

The freshwater cnidarian Hydra can regenerate from wounds, small tissue fragments and even from aggregated cells. This process requires the de novo development of a body axis and oral-aboral polarity, a fundamental developmental process that involves chemical patterning and mechanical shape changes. Gierer and Meinhardt recognized that Hydra's simple body plan and amenability to in vivo experiments make it an experimentally and mathematically tractable model to study developmental patterning and symmetry breaking. They developed a reaction-diffusion model, involving a short-range activator and a long-range inhibitor, which successfully explained patterning in the adult animal. In 2011, HyWnt3 was identified as a candidate for the activator. However, despite the continued efforts of both physicists and biologists, the predicted inhibitor remains elusive. Furthermore, the Gierer-Meinhardt model cannot explain de novo axis formation in cellular aggregates that lack inherited tissue polarity. The aim of this review is to synthesize the current knowledge on Hydra symmetry breaking and patterning. We summarize the history of patterning studies and insights from recent biomechanical and molecular studies, and highlight the need for continued validation of theoretical assumptions and collaboration across disciplinary boundaries. We conclude by proposing new experiments to test current mechano-chemical coupling models and suggest ideas for expanding the Gierer-Meinhardt model to explain de novo patterning, as observed in Hydra aggregates. The availability of a fully sequenced genome, transgenic fluorescent reporter strains, and modern imaging techniques, that enable unprecedented observation of cellular events in vivo, promise to allow the community to crack Hydra's secret to patterning.


Asunto(s)
Hydra , Animales , Modelos Biológicos , Tipificación del Cuerpo
6.
Curr Protoc ; 3(3): e684, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36877155

RESUMEN

Due to their strong regenerative capabilities, freshwater planarians are a well-suited model system for studying the effects of chemicals on stem cell biology and regeneration. After amputation, a planarian will regenerate the missing body parts within 1 to 2 weeks. Because planarians have a distinct head morphology that can be easily identified, head and eye regeneration has been a popular qualitative measure of toxicity. However, qualitative measures can only detect strong defects. Here, we present protocols for quantifying the rate of blastema growth to measure regeneration defects for assessment of chemical toxicity. Following amputation, a regenerative blastema forms at the wound site. Over the course of several days, the blastema grows and subsequently re-forms the missing anatomical structures. This growth can be measured by imaging the regenerating planarian. As the blastema tissue is unpigmented, it can be easily distinguished from the remaining pigmented body using standard image analysis techniques. Basic Protocol 1 provides a step-by-step guide for imaging regenerating planarians over several days of regeneration. Basic Protocol 2 describes the necessary steps for the quantification of blastema size using freeware. It is accompanied by video tutorials to facilitate adaptation. Basic Protocol 3 shows how to calculate the growth rate using linear curve fitting in a spreadsheet. The ease of implementation and low cost make this procedure suitable for an undergraduate laboratory teaching setting, in addition to typical research settings. Although we focus on head regeneration in Dugesia japonica, these protocols are adaptable to other wound sites and planarian species. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Imaging planarians during regeneration Basic Protocol 2: Quantitative analysis of blastema size with ImageJ Basic Protocol 3: Quantification of blastema growth rate.


Asunto(s)
Planarias , Animales , Regeneración Nerviosa , Aclimatación , Amputación Quirúrgica
7.
Curr Protoc ; 3(2): e674, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36799654

RESUMEN

The serine hydrolase acetylcholinesterase (AChE) is an important neuronal enzyme which catalyzes the hydrolysis of the neurotransmitter acetylcholine and other choline esters. The breakdown of acetylcholine by AChE terminates synaptic transmission and regulates neuromuscular communication. AChE inhibition is a common mode of action of various insecticides, such as carbamates and organophosphorus pesticides. Freshwater planarians, especially the species Dugesia japonica, have been shown to possess AChE activity and to be a suitable alternative model for studying the effects of pesticides in vivo. AChE activity can be quantified in homogenates using the Ellman assay. However, this biochemical assay requires specialized equipment and large numbers of planarians. Here, we present a protocol for visualizing AChE activity in individual planarians. Activity staining can be completed in several hours and can be executed using standard laboratory equipment (a fume hood, nutator, and light microscope with imaging capability). We describe the steps for preparing the reagents, and the staining and imaging of the planarians. Planarians are treated with 10% acetic acid and fixed with 4% paraformaldehyde and then incubated in a staining solution containing the substrate acetylthiocholine. After incubation in the staining solution for 3.5 hr on a nutator at 4°C, or stationary on ice, planarians are washed and mounted for imaging. Using exposure to an organophosphorus pesticide as an example, we show how AChE inhibition leads to a loss of staining. Thus, this simple method can be used to qualitatively evaluate AChE inhibition due to chemical exposure or RNA interference, providing a new tool for mechanistic studies of effects on the cholinergic system. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Preparing the staining solution Basic Protocol 2: Fixing, staining, and imaging whole-mount planarian specimens for visualization of acetylcholinesterase activity.


Asunto(s)
Plaguicidas , Planarias , Animales , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/farmacología , Planarias/metabolismo , Compuestos Organofosforados/farmacología , Plaguicidas/farmacología , Acetilcolina/farmacología , Agua Dulce
8.
Neurotoxicol Teratol ; 96: 107148, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36539103

RESUMEN

There is a lack of data on the effects of chronic exposure to common drugs and stimulants on the developing nervous system. Freshwater planarians have emerged as a useful invertebrate model amenable to high-throughput behavioral phenotyping to assay chemical safety in adult and developing brains. Here, we leverage the unique strength of the system to test in parallel for effects on the adult and developing nervous system, by screening ten common drugs and stimulants (forskolin, clenbuterol, LRE-1, MDL-12,330A, adenosine, caffeine, histamine, mianserin, fluoxetine and sertraline) using the asexual freshwater planarian Dugesia japonica. The compounds were tested up to 100 µM nominal concentration for their effects on planarian morphology and behavior. Quantitative phenotypic assessments were performed on days 7 and 12 of exposure using an automated screening platform. The antidepressants sertraline and fluoxetine were the most potent to induce lethality, with significant lethality observed at 10 µM. All ten compounds caused sublethal morphological and/or behavioral effects, with the most effects, in terms of potency and breadth of endpoints affected, seen with mianserin and fluoxetine. Four of the compounds (forskolin, clenbuterol, mianserin, and fluoxetine) were developmentally selective, causing effects at lower concentrations in regenerating planarians. Of these, fluoxetine showed the greatest differences between the two developmental stages, inducing many behavioral endpoints in regenerating planarians but only a few in adult planarians. While some of these behavioral effects may be due to neuroefficacy, these results substantiate the need for better evaluation of the safety of these common drugs on the developing nervous system.


Asunto(s)
Clenbuterol , Planarias , Animales , Fluoxetina/toxicidad , Mianserina/farmacología , Clenbuterol/farmacología , Colforsina/farmacología , Sertralina
9.
10.
Curr Protoc ; 2(12): e637, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36571713

RESUMEN

Traditional mammalian testing is too time- and cost-intensive to keep up with the large number of environmental chemicals needing assessment. This has led to a dearth of information about the potential adverse effects of these chemicals, especially on the developing brain. Thus, there is an urgent need for rapid and cost-effective neurotoxicity and developmental neurotoxicity testing. Because of the complexity of the brain, metabolically competent organismal models are necessary to understand the effects of chemicals on nervous system development and function on a systems level. In this overview, we showcase asexual freshwater planarians as an alternative invertebrate ("non-animal") organismal model for neurotoxicology research. Planarians have long been used to study the effects of chemicals on regeneration and behavior. But they have only recently moved back into the spotlight because modern molecular and computational approaches now enable quantitative high-content and high-throughput toxicity studies. Here, we present a short history of the use of planarians in toxicology research, highlight current techniques to measure toxicity qualitatively and quantitatively in planarians, and discuss how to further promote this non-animal organismal system into mainstream toxicology research. The articles in this collection will help work towards this goal by providing detailed protocols that can be adopted by the community to standardize planarian toxicity testing. © 2022 Wiley Periodicals LLC.


Asunto(s)
Síndromes de Neurotoxicidad , Planarias , Animales , Planarias/fisiología , Invertebrados , Síndromes de Neurotoxicidad/etiología , Pruebas de Toxicidad/métodos , Encéfalo , Mamíferos
12.
Front Toxicol ; 4: 948455, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36267428

RESUMEN

Organophosphorus pesticides (OPs) are a chemically diverse class of commonly used insecticides. Epidemiological studies suggest that low dose chronic prenatal and infant exposures can lead to life-long neurological damage and behavioral disorders. While inhibition of acetylcholinesterase (AChE) is the shared mechanism of acute OP neurotoxicity, OP-induced developmental neurotoxicity (DNT) can occur independently and/or in the absence of significant AChE inhibition, implying that OPs affect alternative targets. Moreover, different OPs can cause different adverse outcomes, suggesting that different OPs act through different mechanisms. These findings emphasize the importance of comparative studies of OP toxicity. Freshwater planarians are an invertebrate system that uniquely allows for automated, rapid and inexpensive testing of adult and developing organisms in parallel to differentiate neurotoxicity from DNT. Effects found only in regenerating planarians would be indicative of DNT, whereas shared effects may represent neurotoxicity. We leverage this unique feature of planarians to investigate potential differential effects of OPs on the adult and developing brain by performing a comparative screen to test 7 OPs (acephate, chlorpyrifos, dichlorvos, diazinon, malathion, parathion and profenofos) across 10 concentrations in quarter-log steps. Neurotoxicity was evaluated using a wide range of quantitative morphological and behavioral readouts. AChE activity was measured using an Ellman assay. The toxicological profiles of the 7 OPs differed across the OPs and between adult and regenerating planarians. Toxicological profiles were not correlated with levels of AChE inhibition. Twenty-two "mechanistic control compounds" known to target pathways suggested in the literature to be affected by OPs (cholinergic neurotransmission, serotonin neurotransmission, endocannabinoid system, cytoskeleton, adenyl cyclase and oxidative stress) and 2 negative controls were also screened. When compared with the mechanistic control compounds, the phenotypic profiles of the different OPs separated into distinct clusters. The phenotypic profiles of adult vs. regenerating planarians exposed to the OPs clustered differently, suggesting some developmental-specific mechanisms. These results further support findings in other systems that OPs cause different adverse outcomes in the (developing) brain and build the foundation for future comparative studies focused on delineating the mechanisms of OP neurotoxicity in planarians.

15.
Arch Toxicol ; 96(12): 3233-3243, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36173421

RESUMEN

Organophosphorus pesticides (OPs) are a chemically diverse class of insecticides that inhibit acetylcholinesterase (AChE). Many OPs require bioactivation to their active oxon form via cytochrome P450 to effectively inhibit AChE. OP toxicity can be mitigated by detoxification reactions performed by carboxylesterase and paraoxonase. The relative extent of bioactivation to detoxification varies among individuals and between species, leading to differential susceptibility to OP toxicity. Because of these species differences, it is imperative to characterize OP metabolism in model systems used to assess OP toxicity. We have shown that the asexual freshwater planarian Dugesia japonica is a suitable model to assess OP neurotoxicity and developmental neurotoxicity via rapid, automated testing of adult and developing organisms in parallel using morphological and behavioral endpoints. D. japonica has two cholinesterase enzymes with intermediate properties between AChE and butyrylcholinesterase that are sensitive to OP inhibition. Here, we demonstrate that D. japonica contains the major OP metabolic machinery to be a relevant model for OP neurotoxicity studies. Adult and regenerating D. japonica can bioactivate chlorpyrifos and diazinon into their respective oxons. Significant AChE inhibition was only observed after in vivo metabolic activation but not when the parent OPs were directly added to planarian homogenate using the same concentrations and timing. Using biochemical assays, we found that D. japonica has both carboxylesterase (24 nmol/(min*mg protein)) and paraoxonase (60 pmol/(min*mg protein)) activity. We show that planarian carboxylesterase activity is distinct from cholinesterase activity using benzil and tacrine. These results further support the use of D. japonica for OP toxicity studies.


Asunto(s)
Cloropirifos , Insecticidas , Síndromes de Neurotoxicidad , Plaguicidas , Planarias , Humanos , Animales , Plaguicidas/toxicidad , Plaguicidas/metabolismo , Diazinón/toxicidad , Cloropirifos/toxicidad , Butirilcolinesterasa , Acetilcolinesterasa , Compuestos Organofosforados/toxicidad , Compuestos Organofosforados/metabolismo , Insecticidas/toxicidad , Insecticidas/metabolismo , Arildialquilfosfatasa , Tacrina , Hidrolasas de Éster Carboxílico , Sistema Enzimático del Citocromo P-450/metabolismo , Agua Dulce , Inhibidores de la Colinesterasa/toxicidad
16.
J Exp Biol ; 225(17)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35924486

RESUMEN

Certain animal species utilize electric fields for communication, hunting and spatial orientation. Freshwater planarians move toward the cathode in a static electric field (cathodic electrotaxis). This planarian behavior was first described by Raymond Pearl more than a century ago. However, planarian electrotaxis has received little attention since, and the underlying mechanisms and evolutionary significance remain unknown. To close this knowledge gap, we developed an apparatus and scoring metrics for automated quantitative and mechanistic studies of planarian behavior upon exposure to a static electric field. Using this automated setup, we characterized electrotaxis in the planarian Dugesia japonica and found that this species responds to voltage instead of current, in contrast to results from previous studies using other planarian species. Surprisingly, we found differences in electrotaxis ability between small (shorter) and large (longer) planarians. To determine the cause of these differences, we took advantage of the regenerative abilities of planarians and compared electrotaxis in head, tail and trunk fragments of various lengths. We found that tail and trunk fragments electrotaxed, whereas head fragments did not, regardless of size. Based on these data, we hypothesized that signals from the head may interfere with electrotaxis when the head area/body area reached a critical threshold. In support of this hypothesis, we found that (1) smaller intact planarians that cannot electrotax have a relatively larger head-to-body-ratio than large planarians that can electrotax, and (2) the electrotaxis behavior of cut head fragments was negatively correlated with the head-to-body ratio of the fragments. Moreover, we could restore cathodic electrotaxis in head fragments via decapitation, directly demonstrating inhibition of electrotaxis by the head.


Asunto(s)
Planarias , Animales , Evolución Biológica , Planarias/fisiología
17.
Dev Biol ; 488: 74-80, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35577031

RESUMEN

We present a new transgenic Hydra vulgaris line expressing a distinct fluorescent protein in each of the three cell lineages of the adult polyp. Plasmid microinjection was used to generate a novel transgenic Hydra line expressing the yellow fluorescent protein YPet in the ectodermal epithelial cell lineage. Tissue grafting was then used to combine a YPet animal with a line that expresses DsRed2 in the endodermal epithelial lineage and eGFP in the interstitial cell (i-cell) lineage. The resulting triple-labeled ("tricolored") transgenic line provides, for the first time, a Hydra in which all three cell lineages can be imaged simultaneously in vivo. We show example confocal images of whole animals and individual cells to illustrate the imaging capabilities that this new line makes possible. We also used this line to carry out new studies of cell fate in the tentacles. Specifically, we evaluated the well-accepted notion that all tentacle cells are terminally differentiated and are displaced or migrate exclusively towards the distal end of the tentacle. We found that ectodermal and endodermal epithelial cells are displaced distally, as expected. In contrast, members of the i-cell lineage, which resembled neuronal precursors, could migrate out of a tentacle into the body column. This example illustrates how this tricolored transgenic line enables new in vivo studies of cell behaviors in Hydra.


Asunto(s)
Hydra , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Linaje de la Célula , Ectodermo/fisiología , Células Epiteliales , Hydra/fisiología
18.
Phys Biol ; 19(1)2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34638110

RESUMEN

Asexual freshwater planarians reproduce by transverse bisection (binary fission) into two pieces. This process produces a head and a tail, which fully regenerate within 1-2 weeks. How planarians split into two offspring-using only their musculature and substrate traction-is a challenging biomechanics problem. We found that three different species,Dugesia japonica,Girardia tigrinaandSchmidtea mediterranea, have evolved three different mechanical solutions to self-bisect. Using time lapse imaging of the fission process, we quantitatively characterize the main steps of division in the three species and extract the distinct and shared key features. Across the three species, planarians actively alter their body shape, regulate substrate traction, and use their muscles to generate tensile stresses large enough to overcome the ultimate tensile strength of the tissue. Moreover, we show thathoweach planarian species divides dictates how resources are split among its offspring. This ultimately determines offspring survival and reproductive success. Thus, heterospecific differences in the mechanics of self-bisection of individual worms explain the observed differences in the population reproductive strategies of different planarian species.


Asunto(s)
Planarias , Animales , Reproducción Asexuada
19.
Curr Biol ; 31(22): 5111-5117.e4, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34624209

RESUMEN

Behavioral responses of freshwater planarians have been studied for over a century.1 In recent decades, behavior has been used as a readout to study planarian development and regeneration,2-6 wound healing,7,8 molecular evolution,4,9,10 neurotoxicology,11-13 and learning and memory.14-17The planarian nervous system is among the simplest of the bilaterally symmetric animals,18 with an anterior brain attached to two ventral nerve cords interconnected by multiple commissures. We found that, in response to mechanical and near-UV stimulation, head stimulation produces turning, tail stimulation produces contraction, and trunk stimulation produces midbody elongation in the planarian Dugesia japonica. When cut into two or three pieces, the anterior end of each headless piece switched its behavior to turning instead of elongation; i.e., it responded as though it were the head. In addition, posterior ends of the head and midbody pieces sometimes produced contraction instead of elongation. Thus, each severed piece acts like an intact animal, with each midbody region having nearly complete behavioral capabilities. These observations show that each midbody region reads the global state of the organism and adapts its response to incoming signals from the remaining tissue. Selective lateral incisions showed that the changes in behavior are not due to nonselective pain responses and that the ventral nerve cords and cross-connectives are responsible for coordinating local behaviors. Our findings highlight a fast functional reorganization of the planarian nervous system that complements the slower repairs provided by regeneration. This reorganization provides needed behavioral responses for survival as regeneration proceeds.


Asunto(s)
Planarias , Animales , Encéfalo , Cabeza/fisiología
20.
Dev Biol ; 467(1-2): 88-94, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32871156

RESUMEN

How an animal establishes its body axis is a fundamental question in developmental biology. The freshwater cnidarian Hydra is an attractive model for studying axis formation because it is radially symmetric, with a single oral-aboral axis. It was recently proposed that the orientation of the new body axis in a regenerating Hydra polyp is determined by the oral-aboral orientation of the actin-myosin contractile processes (myonemes) in the animal's outer epithelial layer. However, it remained unclear how the oral-aboral polarity of the body axis would be defined. As Wnt signaling is known to control axis polarity in Hydra and bilaterians, we hypothesized that it plays a role in axis formation during regeneration of Hydra tissue pieces. We tested this hypothesis using pharmacological perturbations and novel grafting experiments to set Wnt signaling and myoneme orientation perpendicular to each other to determine which controls axis formation. Our results demonstrate that Wnt signaling is the dominant encoder of axis orientation and polarity, in line with its conserved role in axial patterning.


Asunto(s)
Hydra/fisiología , Regeneración/fisiología , Vía de Señalización Wnt/fisiología , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...