Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Sci Adv ; 10(8): eadl1258, 2024 Feb 23.
Article En | MEDLINE | ID: mdl-38381834

Adrenal Cushing's syndrome is a disease of cortisol hypersecretion often caused by mutations in protein kinase A catalytic subunit (PKAc). Using a personalized medicine screening platform, we discovered a Cushing's driver mutation, PKAc-W196G, in ~20% of patient samples analyzed. Proximity proteomics and photokinetic imaging reveal that PKAcW196G is unexpectedly distinct from other described Cushing's variants, exhibiting retained association with type I regulatory subunits (RI) and their corresponding A kinase anchoring proteins (AKAPs). Molecular dynamics simulations predict that substitution of tryptophan-196 with glycine creates a 653-cubic angstrom cleft between the catalytic core of PKAcW196G and type II regulatory subunits (RII), but only a 395-cubic angstrom cleft with RI. Endocrine measurements show that overexpression of RIα or redistribution of PKAcW196G via AKAP recruitment counteracts stress hormone overproduction. We conclude that a W196G mutation in the kinase catalytic core skews R subunit selectivity and biases AKAP association to drive Cushing's syndrome.


Cushing Syndrome , Humans , Cushing Syndrome/genetics , A Kinase Anchor Proteins/genetics , A Kinase Anchor Proteins/metabolism , Signal Transduction , Catalytic Domain , Bias
2.
IUBMB Life ; 75(4): 353-369, 2023 04.
Article En | MEDLINE | ID: mdl-36177749

Protein phosphorylation is a fundamental element of cell signaling. First discovered as a biochemical switch in glycogen metabolism, we now know that this posttranslational modification permeates all aspects of cellular behavior. In humans, over 540 protein kinases attach phosphate to acceptor amino acids, whereas around 160 phosphoprotein phosphatases remove phosphate to terminate signaling. Aberrant phosphorylation underlies disease, and kinase inhibitor drugs are increasingly used clinically as targeted therapies. Specificity in protein phosphorylation is achieved in part because kinases and phosphatases are spatially organized inside cells. A prototypic example is compartmentalization of the cyclic adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase A through association with A-kinase anchoring proteins. This configuration creates autonomous signaling islands where the anchored kinase is constrained in proximity to activators, effectors, and selected substates. This article primarily focuses on A kinase anchoring protein (AKAP) signaling in the heart with an emphasis on anchoring proteins that spatiotemporally coordinate excitation-contraction coupling and hypertrophic responses.


A Kinase Anchor Proteins , Cyclic AMP-Dependent Protein Kinases , Humans , Phosphorylation , A Kinase Anchor Proteins/genetics , A Kinase Anchor Proteins/metabolism , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Signal Transduction , Protein Kinases/metabolism
3.
Cell Rep ; 40(2): 111073, 2022 07 12.
Article En | MEDLINE | ID: mdl-35830806

Mutations in the catalytic subunit of protein kinase A (PKAc) drive the stress hormone disorder adrenal Cushing's syndrome. We define mechanisms of action for the PKAc-L205R and W196R variants. Proximity proteomic techniques demonstrate that both Cushing's mutants are excluded from A kinase-anchoring protein (AKAP)-signaling islands, whereas live-cell photoactivation microscopy reveals that these kinase mutants indiscriminately diffuse throughout the cell. Only cAMP analog drugs that displace native PKAc from AKAPs enhance cortisol release. Rescue experiments that incorporate PKAc mutants into AKAP complexes abolish cortisol overproduction, indicating that kinase anchoring restores normal endocrine function. Analyses of adrenal-specific PKAc-W196R knockin mice and Cushing's syndrome patient tissue reveal defective signaling mechanisms of the disease. Surprisingly each Cushing's mutant engages a different mitogenic-signaling pathway, with upregulation of YAP/TAZ by PKAc-L205R and ERK kinase activation by PKAc-W196R. Thus, aberrant spatiotemporal regulation of each Cushing's variant promotes the transmission of distinct downstream pathogenic signals.


Cushing Syndrome , Animals , Catalytic Domain/genetics , Cushing Syndrome/genetics , Cushing Syndrome/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Hydrocortisone/metabolism , Mice , Proteomics
4.
J Biol Chem ; 295(31): 10749-10765, 2020 07 31.
Article En | MEDLINE | ID: mdl-32482893

Compartmentalization of macromolecules is a ubiquitous molecular mechanism that drives numerous cellular functions. The appropriate organization of enzymes in space and time enables the precise transmission and integration of intracellular signals. Molecular scaffolds constrain signaling enzymes to influence the regional modulation of these physiological processes. Mitochondrial targeting of protein kinases and protein phosphatases provides a means to locally control the phosphorylation status and action of proteins on the surface of this organelle. Dual-specificity protein kinase A anchoring protein 1 (dAKAP1) is a multivalent binding protein that targets protein kinase A (PKA), RNAs, and other signaling enzymes to the outer mitochondrial membrane. Many AKAPs recruit a diverse set of binding partners that coordinate a broad range of cellular processes. Here, results of MS and biochemical analyses reveal that dAKAP1 anchors additional components, including the ribonucleoprotein granule components La-related protein 4 (LARP4) and polyadenylate-binding protein 1 (PABPC1). Local translation of mRNAs at organelles is a means to spatially control the synthesis of proteins. RNA-Seq data demonstrate that dAKAP1 binds mRNAs encoding proteins required for mitochondrial metabolism, including succinate dehydrogenase. Functional studies suggest that the loss of dAKAP1-RNA interactions reduces mitochondrial electron transport chain activity. Hence, dAKAP1 plays a previously unappreciated role as a molecular interface between second messenger signaling and local protein synthesis machinery.


A Kinase Anchor Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Protein Biosynthesis , Second Messenger Systems , A Kinase Anchor Proteins/genetics , Autoantigens/genetics , Autoantigens/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Electron Transport Chain Complex Proteins/biosynthesis , HEK293 Cells , Humans , Mitochondria/genetics , Poly(A)-Binding Protein I/genetics , Poly(A)-Binding Protein I/metabolism , RNA-Seq , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , SS-B Antigen
5.
J Cell Biol ; 219(2)2020 02 03.
Article En | MEDLINE | ID: mdl-31865373

Podosomes are compartmentalized actin-rich adhesions, defined by their ability to locally secrete proteases and remodel extracellular matrix. Matrix remodeling by endothelial podosomes facilitates invasion and thereby vessel formation. However, the mechanisms underlying endothelial podosome formation and function remain unclear. Here, we demonstrate that Septin2, Septin6, and Septin7 are required for maturation of nascent endothelial podosomes into matrix-degrading organelles. We show that podosome development occurs through initial mobilization of the scaffolding protein Tks5 and F-actin accumulation, followed by later recruitment of Septin2. Septin2 localizes around the perimeter of podosomes in close proximity to the basolateral plasma membrane, and phosphoinositide-binding residues of Septin2 are required for podosome function. Combined, our results suggest that the septin cytoskeleton forms a diffusive barrier around nascent podosomes to promote their maturation. Finally, we show that Septin2-mediated regulation of podosomes is critical for endothelial cell invasion associated with angiogenesis. Therefore, targeting of Septin2-mediated podosome formation is a potentially attractive anti-angiogenesis strategy.


Cell Cycle Proteins/genetics , Neovascularization, Physiologic/genetics , Septins/genetics , Actin Cytoskeleton/genetics , Adaptor Proteins, Vesicular Transport/genetics , Animals , Cell Movement/genetics , Cells, Cultured , Endothelial Cells/metabolism , Extracellular Matrix/genetics , Humans , Morphogenesis/genetics , Podosomes/genetics
6.
Cell Chem Biol ; 26(8): 1081-1094.e6, 2019 08 15.
Article En | MEDLINE | ID: mdl-31130521

In the current model of endothelial barrier regulation, the tyrosine kinase SRC is purported to induce disassembly of endothelial adherens junctions (AJs) via phosphorylation of VE cadherin, and thereby increase junctional permeability. Here, using a chemical biology approach to temporally control SRC activation, we show that SRC exerts distinct time-variant effects on the endothelial barrier. We discovered that the immediate effect of SRC activation was to transiently enhance endothelial barrier function as the result of accumulation of VE cadherin at AJs and formation of morphologically distinct reticular AJs. Endothelial barrier enhancement via SRC required phosphorylation of VE cadherin at Y731. In contrast, prolonged SRC activation induced VE cadherin phosphorylation at Y685, resulting in increased endothelial permeability. Thus, time-variant SRC activation differentially phosphorylates VE cadherin and shapes AJs to fine-tune endothelial barrier function. Our work demonstrates important advantages of synthetic biology tools in dissecting complex signaling systems.


Endothelial Cells/metabolism , src-Family Kinases/metabolism , Cell Membrane Permeability , Cells, Cultured , Humans , Time Factors
7.
Methods Mol Biol ; 1636: 21-33, 2017.
Article En | MEDLINE | ID: mdl-28730470

Kinases are involved in a broad spectrum of cell behaviors. A single kinase can interact with different ligands each eliciting a specific cellular response. Dissecting downstream signaling pathways of kinases is a key step to understanding physiological and pathological cell process. However, directing kinase activity to specific substrates remains challenging. Here, we present a new tool to selectively activate a kinase in a specific protein complex in living cells. This technology uses a rapamycin-inducible kinase activation coupled to interaction with FKBP12-binding domain (FRB) tagged protein. Here, we demonstrate application of this method by targeting Src to either p130Cas or FAK and discriminating cell mophodynamic changes downstream each of these signaling complexes.


Gene Expression Regulation/drug effects , Protein Interaction Domains and Motifs , Protein Kinases/metabolism , Signal Transduction/drug effects , Sirolimus/pharmacology , Tacrolimus Binding Protein 1A/chemistry , Tacrolimus Binding Protein 1A/metabolism , Animals , Carrier Proteins , Focal Adhesion Kinase 1/metabolism , Humans , Molecular Imaging , Phosphorylation , Protein Binding , src-Family Kinases/metabolism
8.
Proc Natl Acad Sci U S A ; 113(52): 14976-14981, 2016 12 27.
Article En | MEDLINE | ID: mdl-27956599

Physiological stimuli activate protein kinases for finite periods of time, which is critical for specific biological outcomes. Mimicking this transient biological activity of kinases is challenging due to the limitations of existing methods. Here, we report a strategy enabling transient kinase activation in living cells. Using two protein-engineering approaches, we achieve independent control of kinase activation and inactivation. We show successful regulation of tyrosine kinase c-Src (Src) and Ser/Thr kinase p38α (p38), demonstrating broad applicability of the method. By activating Src for finite periods of time, we reveal how the duration of kinase activation affects secondary morphological changes that follow transient Src activation. This approach highlights distinct roles for sequential Src-Rac1- and Src-PI3K-signaling pathways at different stages during transient Src activation. Finally, we demonstrate that this method enables transient activation of Src and p38 in a specific signaling complex, providing a tool for targeted regulation of individual signaling pathways.


Enzyme Activation , p38 Mitogen-Activated Protein Kinases/metabolism , src-Family Kinases/metabolism , CSK Tyrosine-Protein Kinase , HeLa Cells , Humans , Mutation , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Protein Engineering , Signal Transduction , Synthetic Biology
...