Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Circ Genom Precis Med ; 11(2): e001805, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32966096

RESUMEN

BACKGROUND: The adult mammalian heart has little regenerative capacity after myocardial infarction (MI), whereas neonatal mouse heart regenerates without scarring or dysfunction. However, the underlying pathways are poorly defined. We sought to derive insights into the pathways regulating neonatal development of the mouse heart and cardiac regeneration post-MI. METHODS AND RESULTS: Total RNA-seq of mouse heart through the first 10 days of postnatal life (referred to as P3, P5, P10) revealed a previously unobserved transition in microRNA (miRNA) expression between P3 and P5 associated specifically with altered expression of protein-coding genes on the focal adhesion pathway and cessation of cardiomyocyte cell division. We found profound changes in the coding and noncoding transcriptome after neonatal MI, with evidence of essentially complete healing by P10. Over two-thirds of each of the messenger RNAs, long noncoding RNAs, and miRNAs that were differentially expressed in the post-MI heart were differentially expressed during normal postnatal development, suggesting a common regulatory pathway for normal cardiac development and post-MI cardiac regeneration. We selected exemplars of miRNAs implicated in our data set as regulators of cardiomyocyte proliferation. Several of these showed evidence of a functional influence on mouse cardiomyocyte cell division. In addition, a subset of these miRNAs, miR-144-3p, miR-195a-5p, miR-451a, and miR-6240 showed evidence of functional conservation in human cardiomyocytes. CONCLUSIONS: The sets of messenger RNAs, miRNAs, and long noncoding RNAs that we report here merit further investigation as gatekeepers of cell division in the postnatal heart and as targets for extension of the period of cardiac regeneration beyond the neonatal period.

2.
PLoS Genet ; 10(12): e1004813, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25474312

RESUMEN

Epigenetic marks such as cytosine methylation are important determinants of cellular and whole-body phenotypes. However, the extent of, and reasons for inter-individual differences in cytosine methylation, and their association with phenotypic variation are poorly characterised. Here we present the first genome-wide study of cytosine methylation at single-nucleotide resolution in an animal model of human disease. We used whole-genome bisulfite sequencing in the spontaneously hypertensive rat (SHR), a model of cardiovascular disease, and the Brown Norway (BN) control strain, to define the genetic architecture of cytosine methylation in the mammalian heart and to test for association between methylation and pathophysiological phenotypes. Analysis of 10.6 million CpG dinucleotides identified 77,088 CpGs that were differentially methylated between the strains. In F1 hybrids we found 38,152 CpGs showing allele-specific methylation and 145 regions with parent-of-origin effects on methylation. Cis-linkage explained almost 60% of inter-strain variation in methylation at a subset of loci tested for linkage in a panel of recombinant inbred (RI) strains. Methylation analysis in isolated cardiomyocytes showed that in the majority of cases methylation differences in cardiomyocytes and non-cardiomyocytes were strain-dependent, confirming a strong genetic component for cytosine methylation. We observed preferential nucleotide usage associated with increased and decreased methylation that is remarkably conserved across species, suggesting a common mechanism for germline control of inter-individual variation in CpG methylation. In the RI strain panel, we found significant correlation of CpG methylation and levels of serum chromogranin B (CgB), a proposed biomarker of heart failure, which is evidence for a link between germline DNA sequence variation, CpG methylation differences and pathophysiological phenotypes in the SHR strain. Together, these results will stimulate further investigation of the molecular basis of locally regulated variation in CpG methylation and provide a starting point for understanding the relationship between the genetic control of CpG methylation and disease phenotypes.


Asunto(s)
Enfermedades Cardiovasculares/genética , Metilación de ADN , Genoma , Miocardio/metabolismo , Animales , Secuencia de Bases , Enfermedades Cardiovasculares/patología , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Masculino , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Polimorfismo de Nucleótido Simple , Ratas , Ratas Endogámicas BN , Ratas Endogámicas SHR , Análisis de Secuencia de ADN/métodos
3.
Curr Biol ; 22(19): 1765-73, 2012 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-22885065

RESUMEN

BACKGROUND: The p53, Rb, and Ras/PI3K pathways are implicated in the development of the majority of human cancers. A number of studies have established that these pathways cooperate at the level of the cell cycle leading to loss of normal proliferative controls. Here we have investigated how these signals influence a second critical component of tumor formation-cell growth. RESULTS: We find that oncogenic Ras is sufficient to drive growth via the canonical growth pathway, PI3K-AKT-TOR; however, it does so relatively weakly and p53 loss does not drive cell growth at all. Importantly, we identify a novel role for the Rb family of tumor suppressors in directing cell growth via a signaling pathway distinct from PI3K-AKT-TOR and via an E2F-independent mechanism. However, we find that strong, sustained growth requires Rb loss together with Ras signaling, identifying an additional mechanism by which these oncogenic pathways cooperate and a critical role for Ras in preserving the uptake of extracellular nutrients required for biogenesis. CONCLUSIONS: We have identified a new role for the Rb family in cell biogenesis and show that, as for other processes associated with tumor development, oncogenic cell growth is dependent on cooperating oncogenes.


Asunto(s)
Proteína de Retinoblastoma/metabolismo , Células de Schwann/metabolismo , Células de Schwann/patología , Proteínas ras/metabolismo , Animales , Ciclo Celular , Proliferación Celular , Células Cultivadas , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Proteína de Retinoblastoma/genética , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas ras/genética
4.
Neuron ; 73(4): 729-42, 2012 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-22365547

RESUMEN

Following damage to peripheral nerves, a remarkable process of clearance and regeneration takes place. Axons downstream of the injury degenerate, while the nerve is remodeled to direct axonal regrowth. Schwann cells are important for this regenerative process. "Sensing" damaged axons, they dedifferentiate to a progenitor-like state, in which they aid nerve regeneration. Here, we demonstrate that activation of an inducible Raf-kinase transgene in myelinated Schwann cells is sufficient to control this plasticity by inducing severe demyelination in the absence of axonal damage, with the period of demyelination/ataxia determined by the duration of Raf activation. Remarkably, activation of Raf-kinase also induces much of the inflammatory response important for nerve repair, including breakdown of the blood-nerve barrier and the influx of inflammatory cells. This reversible in vivo model identifies a central role for ERK signaling in Schwann cells in orchestrating nerve repair and is a powerful system for studying peripheral neuropathies and cancer.


Asunto(s)
Sistema de Señalización de MAP Quinasas/fisiología , Regeneración Nerviosa/genética , Traumatismos de los Nervios Periféricos/fisiopatología , Proteínas Proto-Oncogénicas c-raf/metabolismo , Células de Schwann/fisiología , Animales , Animales Recién Nacidos , Benzamidas/farmacología , Movimiento Celular/efectos de los fármacos , Ciclina D1/metabolismo , Citocinas/metabolismo , Difenilamina/análogos & derivados , Difenilamina/farmacología , Antagonistas de Estrógenos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Leucocitos/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Masculino , Mastocitos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Microscopía Electrónica de Transmisión , Microscopía Inmunoelectrónica , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Regeneración Nerviosa/efectos de los fármacos , Neutrófilos/metabolismo , Neutrófilos/patología , Traumatismos de los Nervios Periféricos/patología , Proteínas Proto-Oncogénicas c-raf/genética , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/genética , Receptor de Factor de Crecimiento Nervioso/genética , Receptor de Factor de Crecimiento Nervioso/metabolismo , Receptores de Estrógenos/genética , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/genética , Células de Schwann/ultraestructura , Linfocitos T/metabolismo , Linfocitos T/patología , Tamoxifeno/farmacología , Factores de Tiempo
5.
Cardiovasc Res ; 92(2): 287-95, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21730037

RESUMEN

AIMS: Elastin is the primary component of elastic fibres in arteries, which contribute significantly to the structural integrity of the wall. Fibrillin-1 is a microfibrillar glycoprotein that appears to stabilize elastic fibres mechanically and thereby to delay a fatigue-induced loss of function due to long-term repetitive loading. Whereas prior studies have addressed some aspects of ageing-related changes in the overall mechanical properties of arteries in mouse models of Marfan syndrome, we sought to assess for the first time the load-carrying capability of the elastic fibres early in maturity, prior to the development of ageing-related effects, dilatation, or dissection. METHODS AND RESULTS: We used elastase to degrade elastin in common carotid arteries excised, at 7-9 weeks of age, from a mouse model (mgR/mgR) of Marfan syndrome that expresses fibrillin-1 at 15-25% of normal levels. In vitro biaxial mechanical tests performed before and after exposure to elastase suggested that the elastic fibres exhibited a nearly normal load-bearing capability. Observations from nonlinear optical microscopy suggested further that competent elastic fibres not only contribute to load-bearing, they also increase the undulation of collagen fibres, which endows the normal arterial wall with a more compliant response to pressurization. CONCLUSION: These findings support the hypothesis that it is an accelerated fatigue-induced damage to or protease-related degradation of initially competent elastic fibres that render arteries in Marfan syndrome increasingly susceptible to dilatation, dissection, and rupture.


Asunto(s)
Arteria Carótida Común/metabolismo , Tejido Elástico/metabolismo , Elastina/metabolismo , Síndrome de Marfan/metabolismo , Proteínas de Microfilamentos/deficiencia , Factores de Edad , Animales , Fenómenos Biomecánicos , Arteria Carótida Común/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Tejido Elástico/patología , Fibrilina-1 , Fibrilinas , Masculino , Síndrome de Marfan/genética , Síndrome de Marfan/patología , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/genética , Elastasa Pancreática/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA