Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 15, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38195652

RESUMEN

BACKGROUND: New drugs to tackle the next pathway or mutation fueling cancer are constantly proposed, but 97% of them are doomed to fail in clinical trials, largely because they are identified by cellular or in silico screens that cannot predict their in vivo effect. METHODS: We screened an Adeno-Associated Vector secretome library (> 1000 clones) directly in vivo in a mouse model of cancer and validated the therapeutic effect of the first hit, EMID2, in both orthotopic and genetic models of lung and pancreatic cancer. RESULTS: EMID2 overexpression inhibited both tumor growth and metastatic dissemination, consistent with prolonged survival of patients with high levels of EMID2 expression in the most aggressive human cancers. Mechanistically, EMID2 inhibited TGFß maturation and activation of cancer-associated fibroblasts, resulting in more elastic ECM and reduced levels of YAP in the nuclei of cancer cells. CONCLUSION: This is the first in vivo screening, precisely designed to identify proteins able to interfere with cancer cell invasiveness. EMID2 was selected as the most potent protein, in line with the emerging relevance of the tumor extracellular matrix in controlling cancer cell invasiveness and dissemination, which kills most of cancer patients.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Núcleo Celular , Modelos Animales de Enfermedad , Detección Precoz del Cáncer , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Colágeno/metabolismo
2.
Stem Cell Res ; 71: 103172, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37535990

RESUMEN

Dilated cardiomyopathy (DCM) is a common heart disorder caused by genetic and non-genetic etiologies, characterized by left ventricular dilatation and contractile dysfunction. Here, we created a human induced pluripotent stem cell line from peripheral blood mononuclear cells using non-integrating vectors from a patient carrying a heterozygous LMNA variant (c.481G > A, p.Glu161Lys, NM_170707.4). The obtained EURACi015-A line, showed the typical morphology of pluripotent cells, normal karyotype and exhibited pluripotency markers and a trilineage differentiation potential. This cell line can be successfully differentiated into cardiomyocytes and endothelial cells. This line represents a human in vitro model to study the genetic basis of DCM.


Asunto(s)
Cardiomiopatía Dilatada , Células Madre Pluripotentes Inducidas , Humanos , Cardiomiopatía Dilatada/genética , Células Madre Pluripotentes Inducidas/metabolismo , Lamina Tipo A/genética , Células Endoteliales/metabolismo , Leucocitos Mononucleares/metabolismo , Mutación
3.
Cell Death Dis ; 14(7): 437, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37454154

RESUMEN

Pulmonary fibrosis is a devastating disease, in which fibrotic tissue progressively replaces lung alveolar structure, resulting in chronic respiratory failure. Alveolar type II cells act as epithelial stem cells, being able to transdifferentiate into alveolar type I cells, which mediate gas exchange, thus contributing to lung homeostasis and repair after damage. Impaired epithelial transdifferentiation is emerging as a major pathogenetic mechanism driving both onset and progression of fibrosis in the lung. Here, we show that lung endothelial cells secrete angiocrine factors that regulate alveolar cell differentiation. Specifically, we build on our previous data on the anti-fibrotic microRNA-200c and identify the Vascular Endothelial Growth Factor receptor 1, also named Flt1, as its main functional target in endothelial cells. Endothelial-specific knockout of Flt1 reproduces the anti-fibrotic effect of microRNA-200c against pulmonary fibrosis and results in the secretion of a pool of soluble factors and matrix components able to promote epithelial transdifferentiation in a paracrine manner. Collectively, these data indicate the existence of a complex endothelial-epithelial paracrine crosstalk in vitro and in vivo and position lung endothelial cells as a relevant therapeutic target in the fight against pulmonary fibrosis.


Asunto(s)
MicroARNs , Fibrosis Pulmonar , Humanos , Fibrosis Pulmonar/metabolismo , Transdiferenciación Celular , Células Endoteliales/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pulmón/metabolismo , Células Epiteliales Alveolares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
4.
Nat Cell Biol ; 25(4): 550-564, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36894671

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the RNA virus responsible for the coronavirus disease 2019 (COVID-19) pandemic. Although SARS-CoV-2 was reported to alter several cellular pathways, its impact on DNA integrity and the mechanisms involved remain unknown. Here we show that SARS-CoV-2 causes DNA damage and elicits an altered DNA damage response. Mechanistically, SARS-CoV-2 proteins ORF6 and NSP13 cause degradation of the DNA damage response kinase CHK1 through proteasome and autophagy, respectively. CHK1 loss leads to deoxynucleoside triphosphate (dNTP) shortage, causing impaired S-phase progression, DNA damage, pro-inflammatory pathways activation and cellular senescence. Supplementation of deoxynucleosides reduces that. Furthermore, SARS-CoV-2 N-protein impairs 53BP1 focal recruitment by interfering with damage-induced long non-coding RNAs, thus reducing DNA repair. Key observations are recapitulated in SARS-CoV-2-infected mice and patients with COVID-19. We propose that SARS-CoV-2, by boosting ribonucleoside triphosphate levels to promote its replication at the expense of dNTPs and by hijacking damage-induced long non-coding RNAs' biology, threatens genome integrity and causes altered DNA damage response activation, induction of inflammation and cellular senescence.


Asunto(s)
COVID-19 , Animales , Ratones , SARS-CoV-2 , Senescencia Celular , Daño del ADN
5.
NPJ Regen Med ; 8(1): 8, 2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36774354

RESUMEN

Nonhealing wounds place a significant burden on both quality of life of affected patients and health systems. Skin substitutes are applied to promote the closure of nonhealing wounds, although their efficacy is limited by inadequate vascularization. The stromal vascular fraction (SVF) from the adipose tissue is a promising therapy to overcome this limitation. Despite a few successful clinical trials, its incorporation in the clinical routine has been hampered by their inconsistent results. All these studies concluded by warranting pre-clinical work aimed at both characterizing the cell types composing the SVF and shedding light on their mechanism of action. Here, we established a model of nonhealing wound, in which we applied the SVF in combination with a clinical-grade skin substitute. We purified the SVF cells from transgenic animals to trace their fate after transplantation and observed that it gave rise to a mature vascular network composed of arteries, capillaries, veins, as well as lymphatics, structurally and functionally connected with the host circulation. Then we moved to a human-in-mouse model and confirmed that SVF-derived endothelial cells formed hybrid human-mouse vessels, that were stabilized by perivascular cells. Mechanistically, SVF-derived endothelial cells engrafted and expanded, directly contributing to the formation of new vessels, while a population of fibro-adipogenic progenitors stimulated the expansion of the host vasculature in a paracrine manner. These data have important clinical implications, as they provide a steppingstone toward the reproducible and effective adoption of the SVF as a standard care for nonhealing wounds.

6.
J Pathol ; 259(3): 254-263, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36651103

RESUMEN

SARS-CoV-2 infection is clinically heterogeneous, ranging from asymptomatic to deadly. A few patients with COVID-19 appear to recover from acute viral infection but nevertheless progress in their disease and eventually die, despite persistent negativity at molecular tests for SARS-CoV-2 RNA. Here, we performed post-mortem analyses in 27 consecutive patients who had apparently recovered from COVID-19 but had progressively worsened in their clinical conditions despite repeated viral negativity in nasopharyngeal swabs or bronchioalveolar lavage for 11-300 consecutive days (average: 105.5 days). Three of these patients remained PCR-negative for over 9 months. Post-mortem analysis revealed evidence of diffuse or focal interstitial pneumonia in 23/27 (81%) patients, accompanied by extensive fibrotic substitution in 13 cases (47%). Despite apparent virological remission, lung pathology was similar to that observed in acute COVID-19 individuals, including micro- and macro-vascular thrombosis (67% of cases), vasculitis (24%), squamous metaplasia of the respiratory epithelium (30%), frequent cytological abnormalities and syncytia (67%), and the presence of dysmorphic features in the bronchial cartilage (44%). Consistent with molecular test negativity, SARS-CoV-2 antigens were not detected in the respiratory epithelium. In contrast, antibodies against both spike and nucleocapsid revealed the frequent (70%) infection of bronchial cartilage chondrocytes and para-bronchial gland epithelial cells. In a few patients (19%), we also detected positivity in vascular pericytes and endothelial cells. Quantitative RT-PCR amplification in tissue lysates confirmed the presence of viral RNA. Together, these findings indicate that SARS-CoV-2 infection can persist significantly longer than suggested by standard PCR-negative tests, with specific infection of specific cell types in the lung. Whether these persistently infected cells also play a pathogenic role in long COVID remains to be addressed. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , ARN Viral/genética , Células Endoteliales , Síndrome Post Agudo de COVID-19
7.
Trends Pharmacol Sci ; 43(11): 894-905, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35779965

RESUMEN

Biologics are revolutionizing the treatment of chronic diseases, such as cancer and monogenic disorders, by overcoming the limits of classic therapeutic approaches using small molecules. However, the clinical use of biologics is limited for cardiovascular diseases (CVDs) , which are the primary cause of morbidity and mortality worldwide. Here, we review the state-of-the-art use of biologics for cardiac disorders and provide a framework for understanding why they still struggle to enter the field. Some limitations are common and intrinsic to all biological drugs, whereas others depend on the complexity of cardiac disease. In our opinion, delineating these struggles will be valuable in developing and accelerating the approval of a new generation of biologics for CVDs.


Asunto(s)
Productos Biológicos , Biosimilares Farmacéuticos , Cardiopatías , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Biosimilares Farmacéuticos/uso terapéutico , Cardiopatías/tratamiento farmacológico , Humanos
8.
Nat Commun ; 13(1): 81, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013172

RESUMEN

Despite the high prevalence of ischemic heart diseases worldwide, no antibody-based treatment currently exists. Starting from the evidence that a specific isoform of the Bone Morphogenetic Protein 1 (BMP1.3) is particularly elevated in both patients and animal models of myocardial infarction, here we assess whether its inhibition by a specific monoclonal antibody reduces cardiac fibrosis. We find that this treatment reduces collagen deposition and cross-linking, paralleled by enhanced cardiomyocyte survival, both in vivo and in primary cultures of cardiac cells. Mechanistically, we show that the anti-BMP1.3 monoclonal antibody inhibits Transforming Growth Factor ß pathway, thus reducing myofibroblast activation and inducing cardioprotection through BMP5. Collectively, these data support the therapeutic use of anti-BMP1.3 antibodies to prevent cardiomyocyte apoptosis, reduce collagen deposition and preserve cardiac function after ischemia.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Proteína Morfogenética Ósea 1/genética , Cardiotónicos/farmacología , Cicatriz/genética , Fibrosis Endomiocárdica/genética , Infarto del Miocardio/genética , Animales , Proteína Morfogenética Ósea 1/antagonistas & inhibidores , Proteína Morfogenética Ósea 1/metabolismo , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 5/genética , Proteína Morfogenética Ósea 5/metabolismo , Estudios de Casos y Controles , Supervivencia Celular/efectos de los fármacos , Cicatriz/etiología , Cicatriz/metabolismo , Cicatriz/prevención & control , Modelos Animales de Enfermedad , Fibrosis Endomiocárdica/etiología , Fibrosis Endomiocárdica/metabolismo , Fibrosis Endomiocárdica/prevención & control , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/complicaciones , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Cultivo Primario de Células , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Troponina T/genética , Troponina T/metabolismo
9.
Cell Death Dis ; 13(1): 2, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34916483

RESUMEN

Therapies halting the progression of fibrosis are ineffective and limited. Activated myofibroblasts are emerging as important targets in the progression of fibrotic diseases. Previously, we performed a high-throughput screen on lung fibroblasts and subsequently demonstrated that the inhibition of myofibroblast activation is able to prevent lung fibrosis in bleomycin-treated mice. High-throughput screens are an ideal method of repurposing drugs, yet they contain an intrinsic limitation, which is the size of the library itself. Here, we exploited the data from our "wet" screen and used "dry" machine learning analysis to virtually screen millions of compounds, identifying novel anti-fibrotic hits which target myofibroblast differentiation, many of which were structurally related to dopamine. We synthesized and validated several compounds ex vivo ("wet") and confirmed that both dopamine and its derivative TS1 are powerful inhibitors of myofibroblast activation. We further used RNAi-mediated knock-down and demonstrated that both molecules act through the dopamine receptor 3 and exert their anti-fibrotic effect by inhibiting the canonical transforming growth factor ß pathway. Furthermore, molecular modelling confirmed the capability of TS1 to bind both human and mouse dopamine receptor 3. The anti-fibrotic effect on human cells was confirmed using primary fibroblasts from idiopathic pulmonary fibrosis patients. Finally, TS1 prevented and reversed disease progression in a murine model of lung fibrosis. Both our interdisciplinary approach and our novel compound TS1 are promising tools for understanding and combating lung fibrosis.


Asunto(s)
Bleomicina/efectos adversos , Descubrimiento de Drogas/métodos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/terapia , Enfermedades Pulmonares/inducido químicamente , Enfermedades Pulmonares/terapia , Aprendizaje Automático/normas , Miofibroblastos/metabolismo , Animales , Diferenciación Celular , Humanos , Fibrosis Pulmonar Idiopática/patología , Enfermedades Pulmonares/patología , Ratones , Transfección
10.
Mol Brain ; 14(1): 10, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436052

RESUMEN

The neurotrophin Brain-derived neurotrophic factor (BDNF) is encoded by multiple bipartite transcripts. Each BDNF transcript is composed by one out of 11 alternatively spliced exons containing the 5'untranslated region (UTR), and one common exon encompassing the coding sequence (CDS) and the 3'UTR with two variants (short and long). In neurons, BDNF mRNA variants have a distinct subcellular distribution, constituting a "spatial code", with exon 1, 3, 5, 7 and 8 located in neuronal somata, exon 4 extending into proximal dendrites, and exon 2 and 6 reaching distal dendrites. We previously showed that the CDS encodes constitutive dendritic targeting signals (DTS) and that both the 3'UTR-short and the 3'UTR-long contain activity-dependent DTS. However, the role of individual 5'UTR exons in mRNA sorting remains unclear. Here, we tested the ability of each different BDNF 5'UTRs to affect the subcellular localization of the green fluorescent protein (GFP) reporter mRNA. We found that exon 2 splicing isoforms (2a, 2b, and 2c) induced a constitutive dendritic targeting of the GFP reporter mRNA towards distal dendritic segments. The other isoforms did not affect GFP-mRNA dendritic trafficking. Through a bioinformatic analysis, we identified five unique cis-elements in exon 2a, 2b, and 2c which might contribute to building a DTS. This study provides additional information on the mechanism regulating the cellular sorting of BDNF mRNA variants.


Asunto(s)
Regiones no Traducidas 5'/genética , Empalme Alternativo/genética , Factor Neurotrófico Derivado del Encéfalo/genética , Dendritas/metabolismo , Transporte de ARN/genética , Animales , Secuencia de Bases , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Exones/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/citología , Conformación de Ácido Nucleico , Motivos de Nucleótidos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Wistar
11.
Cardiovasc Res ; 117(1): 256-270, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31999325

RESUMEN

AIMS: Cardiac ischaemia does not elicit an efficient angiogenic response. Indeed, lack of surgical revascularization upon myocardial infarction results in cardiomyocyte death, scarring, and loss of contractile function. Clinical trials aimed at inducing therapeutic revascularization through the delivery of pro-angiogenic molecules after cardiac ischaemia have invariably failed, suggesting that endothelial cells in the heart cannot mount an efficient angiogenic response. To understand why the heart is a poorly angiogenic environment, here we compare the angiogenic response of the cardiac and skeletal muscle using a lineage tracing approach to genetically label sprouting endothelial cells. METHODS AND RESULTS: We observed that overexpression of the vascular endothelial growth factor in the skeletal muscle potently stimulated angiogenesis, resulting in the formation of a massive number of new capillaries and arterioles. In contrast, response to the same dose of the same factor in the heart was blunted and consisted in a modest increase in the number of new arterioles. By using Apelin-CreER mice to genetically label sprouting endothelial cells we observed that different pro-angiogenic stimuli activated Apelin expression in both muscle types to a similar extent, however, only in the skeletal muscle, these cells were able to sprout, form elongated vascular tubes activating Notch signalling, and became incorporated into arteries. In the heart, Apelin-positive cells transiently persisted and failed to give rise to new vessels. When we implanted cancer cells in different organs, the abortive angiogenic response in the heart resulted in a reduced expansion of the tumour mass. CONCLUSION: Our genetic lineage tracing indicates that cardiac endothelial cells activate Apelin expression in response to pro-angiogenic stimuli but, different from those of the skeletal muscle, fail to proliferate and form mature and structured vessels. The poor angiogenic potential of the heart is associated with reduced tumour angiogenesis and growth of cancer cells.


Asunto(s)
Apelina/metabolismo , Linaje de la Célula , Vasos Coronarios/metabolismo , Células Endoteliales/metabolismo , Músculo Esquelético/irrigación sanguínea , Neoplasias/irrigación sanguínea , Neovascularización Patológica , Neovascularización Fisiológica , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Apelina/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Línea Celular Tumoral , Proliferación Celular , Microambiente Celular , Vasos Coronarios/citología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Neoplasias/metabolismo , Neoplasias/patología , Fenotipo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Carga Tumoral , Microambiente Tumoral , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
12.
EBioMedicine ; 61: 103104, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33158808

RESUMEN

BACKGROUND: COVID-19 is a deadly pulmonary disease with peculiar characteristics, which include variable clinical course and thrombophilia. A thorough understanding of the pathological correlates of the disease is still missing. METHODS: Here we report the systematic analysis of 41 consecutive post-mortem samples from individuals who died of COVID-19. Histological analysis is complemented by immunohistochemistry for cellular and viral antigens and the detection of viral genomes by in situ RNA hybridization. FINDINGS: COVID-19 is characterized by extensive alveolar damage (41/41 of patients) and thrombosis of the lung micro- and macro-vasculature (29/41, 71%). Thrombi were in different stages of organization, consistent with their local origin. Pneumocytes and endothelial cells contained viral RNA even at the later stages of the disease. An additional feature was the common presence of a large number of dysmorphic pneumocytes, often forming syncytial elements (36/41, 87%). Despite occasional detection of virus-positive cells, no overt signs of viral infection were detected in other organs, which showed non-specific alterations. INTERPRETATION: COVID-19 is a unique disease characterized by extensive lung thrombosis, long-term persistence of viral RNA in pneumocytes and endothelial cells, along with the presence of infected cell syncytia. Several of COVID-19 features might be consequent to the persistence of virus-infected cells for the duration of the disease. FUNDING: This work was supported by a King's Together Rapid COVID-19 Call grant from King's College London. MG is supported by the European Research Council (ERC) Advanced Grant 787971 "CuRE" and by Programme Grant RG/19/11/34633 from the British Heart Foundation.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/patología , Neumonía Viral/patología , ARN Viral/metabolismo , Trombosis/etiología , Anciano , Anciano de 80 o más Años , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/virología , Autopsia , Betacoronavirus/aislamiento & purificación , COVID-19 , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/virología , Cuidados Críticos , Células Endoteliales/virología , Femenino , Células Gigantes/citología , Células Gigantes/virología , Humanos , Pulmón/patología , Pulmón/virología , Masculino , Pandemias , Neumonía Viral/complicaciones , Neumonía Viral/virología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo
13.
JCI Insight ; 5(17)2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32721945

RESUMEN

Dysregulated sensing of self-nucleic acid is a leading cause of autoimmunity in multifactorial and monogenic diseases. Mutations in Wiskott-Aldrich syndrome protein (WASp), a key regulator of cytoskeletal dynamics in immune cells, cause autoimmune manifestations and increased production of type I IFNs by innate cells. Here we show that immune complexes of self-DNA and autoantibodies (DNA-ICs) contribute to elevated IFN levels via activation of the cGAS/STING pathway of cytosolic sensing. Mechanistically, lack of endosomal F-actin nucleation by WASp caused a delay in endolysosomal maturation and prolonged the transit time of ingested DNA-ICs. Stalling in maturation-defective organelles facilitated leakage of DNA-ICs into the cytosol, promoting activation of the TBK1/STING pathway. Genetic deletion of STING and STING and cGAS chemical inhibitors abolished IFN production and rescued systemic activation of IFN-stimulated genes in vivo. These data unveil the contribution of cytosolic self-nucleic acid sensing in WAS and underscore the importance of WASp-mediated endosomal actin remodeling in preventing innate activation.


Asunto(s)
ADN/inmunología , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Actinas/metabolismo , Animales , Autoanticuerpos/inmunología , Células Cultivadas , Células Dendríticas/inmunología , Endosomas/metabolismo , Inmunidad Innata , Interferones/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/metabolismo
14.
Int J Mol Sci ; 21(15)2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32718071

RESUMEN

With the increased prevalence of chronic diseases, non-healing wounds place a significant burden on the health system and the quality of life of affected patients. Non-healing wounds are full-thickness skin lesions that persist for months or years. While several factors contribute to their pathogenesis, all non-healing wounds consistently demonstrate inadequate vascularization, resulting in the poor supply of oxygen, nutrients, and growth factors at the level of the lesion. Most existing therapies rely on the use of dermal substitutes, which help the re-epithelialization of the lesion by mimicking a pro-regenerative extracellular matrix. However, in most patients, this approach is not efficient, as non-healing wounds principally affect individuals afflicted with vascular disorders, such as peripheral artery disease and/or diabetes. Over the last 25 years, innovative therapies have been proposed with the aim of fostering the regenerative potential of multiple immune cell types. This can be achieved by promoting cell mobilization into the circulation, their recruitment to the wound site, modulation of their local activity, or their direct injection into the wound. In this review, we summarize preclinical and clinical studies that have explored the potential of various populations of immune cells to promote skin regeneration in non-healing wounds and critically discuss the current limitations that prevent the adoption of these therapies in the clinics.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Neovascularización Fisiológica , Repitelización , Regeneración , Piel , Cicatrización de Heridas , Heridas y Lesiones , Animales , Matriz Extracelular/metabolismo , Humanos , Piel/lesiones , Piel/metabolismo , Heridas y Lesiones/metabolismo , Heridas y Lesiones/patología , Heridas y Lesiones/terapia
15.
Mol Brain ; 13(1): 43, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32183860

RESUMEN

Brain Derived Neurotrophic Factor (BDNF) signalling contributes to the formation, maturation and plasticity of Central Nervous System (CNS) synapses. Acute exposure of cultured brain circuits to BDNF leads to up-regulation of glutamatergic neuro-transmission, by the accurate tuning of pre and post synaptic features, leading to structural and functional synaptic changes. Chronic BDNF treatment has been comparatively less investigated, besides it may represent a therapeutic option to obtain rescue of post-injury alterations of synaptic networks. In this study, we used a paradigm of BDNF long-term (4 days) incubation to assess in hippocampal neurons in culture, the ability of such a treatment to alter synapses. By patch clamp recordings we describe the augmented function of excitatory neurotransmission and we further explore by live imaging the presynaptic changes brought about by long-term BDNF. In our study, exogenous long-term BDNF exposure of post-natal neurons did not affect inhibitory neurotransmission. We further compare, by genetic manipulations of cultured neurons and BDNF release, intracellular overexpression of this neurotrophin at the same developmental age. We describe for the first-time differences in synaptic modulation by BDNF with respect to exogenous or intracellular release paradigms. Such a finding holds the potential of influencing the design of future therapeutic strategies.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Espacio Extracelular/metabolismo , Hipocampo/metabolismo , Espacio Intracelular/metabolismo , Sinapsis/metabolismo , Animales , Células Cultivadas , Ácido Glutámico/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Receptor trkB/metabolismo , Sinapsis/efectos de los fármacos , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
16.
J Physiol ; 598(14): 2923-2939, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-30816576

RESUMEN

The crosstalk between endothelial cells and cardiomyocytes has emerged as a requisite for normal cardiac development, but also a key pathogenic player during the onset and progression of cardiac disease. Endothelial cells and cardiomyocytes are in close proximity and communicate through the secretion of paracrine signals, as well as through direct cell-to-cell contact. Here, we provide an overview of the endothelial cell-cardiomyocyte interactions controlling heart development and the main processes affecting the heart in normal and pathological conditions, including ischaemia, remodelling and metabolic dysfunction. We also discuss the possible role of these interactions in cardiac regeneration and encourage the further improvement of in vitro models able to reproduce the complex environment of the cardiac tissue, in order to better define the mechanisms by which endothelial cells and cardiomyocytes interact with a final aim of developing novel therapeutic opportunities.


Asunto(s)
Células Endoteliales , Miocitos Cardíacos , Corazón
17.
Oxid Med Cell Longev ; 2018: 6510159, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30534349

RESUMEN

Photobiomodulation (PBM) is emerging as an effective strategy for the management of multiple inflammatory conditions, including oral mucositis (OM) in cancer patients who receive chemotherapy or radiotherapy. Still, the poor understanding of the mechanisms by which the light interacts with biological tissues and the heterogeneity of light sources and protocols employed worldwide significantly limits its applicability. Reactive oxygen species (ROS) are massively generated during the early phases of OM and play a major role in the pathogenesis of inflammation in general. Here, we report the results of a clinical and experimental study, aimed at evaluating the effect of laser light at different wavelengths on oxidative stress in vivo in oncologic patients suffering from OM and in vitro in two cell types abundantly present within the inflamed oral mucosa, neutrophil polymorphonuclear (PMN) granulocytes, and keratinocytes. In addition to standard ROS detection methods, we exploited a roGFP2-Orp1 genetically encoded sensor, allowing specific, quantitative, and dynamic imaging of redox events in living cells in response to oxidative stress and PBM. We found that the various wavelengths differentially modulate ROS production. In particular, the 660 nm laser light increases ROS production when applied either before or after an oxidative stimulus. In contrast, the 970 nm laser light exerted a moderate antioxidant activity both in the saliva of OM patients and in both cell types. The most marked reduction in the levels of ROS was detected in cells exposed either to the 800 nm laser light or to the combination of the three wavelengths. Overall, our study demonstrates that PBM exerts different effects on the redox state of both PMNs and keratinocytes depending on the used wavelength and prompts the validation of a multiwavelength protocol in the clinical settings.


Asunto(s)
Queratinocitos/efectos de la radiación , Terapia por Luz de Baja Intensidad/métodos , Neutrófilos/efectos de la radiación , Estrés Oxidativo/efectos de la radiación , Estomatitis/radioterapia , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Láseres de Semiconductores , Masculino , Persona de Mediana Edad , Oxidación-Reducción/efectos de la radiación
18.
Nat Commun ; 9(1): 2432, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29946151

RESUMEN

Cardiomyocyte proliferation stops at birth when the heart is no longer exposed to maternal blood and, likewise, to regulatory T cells (Tregs) that are expanded to promote maternal tolerance towards the fetus. Here, we report a role of Tregs in promoting cardiomyocyte proliferation. Treg-conditioned medium promotes cardiomyocyte proliferation, similar to the serum from pregnant animals. Proliferative cardiomyocytes are detected in the heart of pregnant mothers, and Treg depletion during pregnancy decreases both maternal and fetal cardiomyocyte proliferation. Treg depletion after myocardial infarction results in depressed cardiac function, massive inflammation, and scarce collagen deposition. In contrast, Treg injection reduces infarct size, preserves contractility, and increases the number of proliferating cardiomyocytes. The overexpression of six factors secreted by Tregs (Cst7, Tnfsf11, Il33, Fgl2, Matn2, and Igf2) reproduces the therapeutic effect. In conclusion, Tregs promote fetal and maternal cardiomyocyte proliferation in a paracrine manner and improve the outcome of myocardial infarction.


Asunto(s)
Proliferación Celular , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Linfocitos T Reguladores/fisiología , Animales , Células CHO , Cricetinae , Cricetulus , Medios de Cultivo Condicionados , Femenino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio , Miocitos Cardíacos , Embarazo , Ratas
19.
Biol Open ; 5(7): 899-907, 2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-27256407

RESUMEN

Drug-resistance to chemotherapics in aggressive neuroblastoma (NB) is characterized by enhanced cell survival mediated by TrkB and its ligand, brain-derived neurotrophic factor (BDNF); thus reduction in BDNF levels represent a promising strategy to overcome drug-resistance, but how chemotherapics regulate BDNF is unknown. Here, cisplatin treatment in SK-N-BE neuroblastoma upregulated multiple BDNF transcripts, except exons 5 and 8 variants. Cisplatin increased BDNF mRNA and protein, and enhanced translation of a firefly reporter gene flanked by BDNF 5'UTR exons 1, 2c, 4 or 6 and 3'UTR-long. To block BDNF translation we focused on aurora kinases inhibitors which are proposed as new chemotherapeutics. NB cell survival after 24 h treatment was 43% with cisplatin, and 22% by cisplatin+aurora kinase inhibitor PHA-680632, while the aurora kinases inhibitor alone was less effective; however the combined treatment induced a paradoxical increase of BDNF in surviving cells with strong translational activation of exon6-3'UTR-long transcript, while translation of BDNF transcripts 1, 2C and 4 was suppressed. In conclusion, combined cisplatin and aurora kinase inhibitor treatment increases cell death, but induces BDNF overproduction in surviving cells through an aurora kinase-independent mechanism.

20.
Front Mol Neurosci ; 8: 62, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26578876

RESUMEN

Sorting of mRNAs in neuronal dendrites relies upon inducible transport mechanisms whose molecular bases are poorly understood. We investigated here the mechanism of inducible dendritic targeting of rat brain-derived neurotrophic factor (BDNF) mRNAs as a paradigmatic example. BDNF encodes multiple mRNAs with either short or long 3' UTR, both hypothesized to harbor inducible dendritic targeting signals. However, the mechanisms of sorting of the two 3' UTR isoforms are controversial. We found that dendritic localization of BDNF mRNAs with short 3' UTR was induced by depolarization and NT3 in vitro or by seizures in vivo and required CPEB-1, -2 and ELAV-2, -4. Dendritic targeting of long 3' UTR was induced by activity or BDNF and required CPEB-1 and the relief of soma-retention signals mediated by ELAV-1, -3, -4, and FXR proteins. Thus, long and short 3' UTRs, by using different sets of RNA-binding proteins provide a mechanism of selective targeting in response to different stimuli which may underlay distinct roles of BDNF variants in neuronal development and plasticity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...