Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
1.
Article En | MEDLINE | ID: mdl-38662425

Background: While it is well recognized that an automated insulin delivery (AID) algorithm should adapt to changes in physiology, it is less understood that the individual would also have to adapt to the AID system. The adaptive biobehavioral control (ABC) method presented here attempts to compensate for this deficiency by including AID into an information cloud-based ecosystem. Methods: The Web Information Tool (WIT) implements the ABC concept via the following: (1) a Physiological Adaptation Module (PAM) that tracks metabolic changes and adapts AID parameters accordingly and (2) a Behavioral Adaptation Module (BAM) that provides information feedback. The safety of WIT (primary outcome) was assessed in an 8-week randomized, two-arm parallel pilot study. All participants used the Control-IQ® AID system enhanced with PAM, but only those in the Experimental group had access to BAM. Secondary glycemic outcomes were computed using the 2-week baseline period and the last 2 weeks of treatment. Results: Thirty participants with type 1 diabetes (T1D) completed all study procedures (17 female/13 male; age: 40 ± 14 years; HbA1c: 6.6% ± 0.5%). No severe hypoglycemia, DKA, or other serious adverse events were reported. Comparing the Experimental and Control groups, no significant difference was observed in time in range (70-180 mg/dL): 74.6% vs 73.8%, adjusted mean difference: 2.65%, 95% CI (-1.12%,6.41%), P = 0.161. Time in 70-140 mg/dL was significantly higher in the Experimental group: 50.7% vs 49.2%, 5.71% (0.44%,10.97%), P = 0.035, without increased time below range: 0.54% (-0.09%,1.17%), P = 0.089. Conclusion: The results demonstrate that it is safe to integrate an AID system into the WIT ecosystem. Validation in a full-scale study is ongoing.

2.
Article En | MEDLINE | ID: mdl-38662426

Background: Computer simulators of human metabolism are powerful tools to design and validate new diabetes treatments. However, these platforms are often limited in the diversity of behaviors and glycemic conditions they can reproduce. Replay methodologies leverage field-collected data to create ad hoc simulation environments representative of real-life conditions. After formal validations of our method in prior publications, we demonstrate its capacity to reproduce a recent clinical trial. Methods: Using the replay methodology, an ensemble of replay simulators was generated using data from a randomized crossover clinical trial comparing the hybrid closed loop (HCL) and fully closed loop (FCL) control modalities in automated insulin delivery (AID), creating 64 subject/modality pairs. Each virtual subject was exposed to the alternate AID modality to compare the simulated versus observed glycemic outcomes. Equivalence tests were performed for time in, below, and above range (TIR, TBR, and TAR) and high and low blood glucose indices (HBGI and LBGI) considering equivalence margins corresponding to clinical significance. Results: TIR, TAR, LBGI, and HBGI showed statistical and clinical equivalence between the original and the simulated data; TBR failed the equivalence test. For example, in the HCL mode, simulated TIR was 84.89% versus an observed 84.31% (P = 0.0170, confidence interval [CI] [-3.96, 2.79]), and for FCL mode, TIR was 76.58% versus 77.41% (P = 0.0222, CI [-2.54, 4.20]). Conclusion: Clinical trial data confirm the prior in silico validation of the UVA replay method in predicting the glycemic impact of modified insulin treatments. This in vivo demonstration justifies the application of the replay method to the personalization and adaptation of treatment strategies in people with type 1 diabetes.

3.
J Diabetes Sci Technol ; 18(2): 318-323, 2024 Mar.
Article En | MEDLINE | ID: mdl-37966051

BACKGROUND: With automated insulin delivery (AID) systems becoming widely adopted in the management of type 1 diabetes, we have seen an increase in occurrences of rebound hypoglycemia or generated hypoglycemia induced by the controller's response to rapid glucose rises following rescue carbohydrates. Furthermore, as AID systems aim to enable complete automation of prandial control, algorithms are designed to react even more strongly to glycemic rises. This work introduces a rebound hypoglycemia prevention layer (HypoSafe) that can be easily integrated into any AID system. METHODS: HypoSafe constrains the maximum permissible insulin delivery dose based on the minimum glucose reading from the previous hour and the current glucose level. To demonstrate its efficacy, we integrated HypoSafe into the latest University of Virginia (UVA) AID system and simulated two scenarios using the 100-adult cohort of the UVA/Padova T1D simulator: a nominal case including three unannounced meals, and another case where hypoglycemia was purposely induced by an overestimated manual bolus. RESULTS: In both simulation scenarios, rebound hypoglycemia events were reduced with HypoSafe (nominal: from 39 to 0, hypo-induced: from 55 to 7) by attenuating the commanded basal (nominal: 0.27U vs. 0.04U, hypo-induced: 0.27U vs. 0.03U) and bolus (nominal: 1.02U vs. 0.05U, hypo-induced: 0.43U vs. 0.02U) within the 30-minute interval after treating a hypoglycemia event. No clinically significant changes resulted for time in the range of 70 to 180 mg/dL or above 180 mg/dL. CONCLUSION: HypoSafe was shown to be effective in reducing rebound hypoglycemia events without affecting achieved time in range when combined with an advanced AID system.


Diabetes Mellitus, Type 1 , Hypoglycemia , Pancreas, Artificial , Adult , Humans , Hypoglycemic Agents/adverse effects , Pancreas, Artificial/adverse effects , Blood Glucose , Blood Glucose Self-Monitoring/methods , Insulin Infusion Systems/adverse effects , Hypoglycemia/chemically induced , Diabetes Mellitus, Type 1/drug therapy , Insulin/adverse effects , Glucose/adverse effects
4.
J Diabetes Sci Technol ; 18(1): 215-239, 2024 Jan.
Article En | MEDLINE | ID: mdl-37811866

The Fifth Artificial Pancreas Workshop: Enabling Fully Automation, Access, and Adoption was held at the National Institutes of Health (NIH) Campus in Bethesda, Maryland on May 1 to 2, 2023. The organizing Committee included representatives of NIH, the US Food and Drug Administration (FDA), Diabetes Technology Society, Juvenile Diabetes Research Foundation (JDRF), and the Leona M. and Harry B. Helmsley Charitable Trust. In previous years, the NIH Division of Diabetes, Endocrinology, and Metabolic Diseases along with other diabetes organizations had organized periodic workshops, and it had been seven years since the NIH hosted the Fourth Artificial Pancreas in July 2016. Since then, significant improvements in insulin delivery have occurred. Several automated insulin delivery (AID) systems are now commercially available. The workshop featured sessions on: (1) Lessons Learned from Recent Advanced Clinical Trials and Real-World Data Analysis, (2) Interoperability, Data Management, Integration of Systems, and Cybersecurity, Challenges and Regulatory Considerations, (3) Adaptation of Systems Through the Lifespan and Special Populations: Are Specific Algorithms Needed, (4) Development of Adaptive Algorithms for Insulin Only and for Multihormonal Systems or Combination with Adjuvant Therapies and Drugs: Clinical Expected Outcomes and Public Health Impact, (5) Novel Artificial Intelligence Strategies to Develop Smarter, More Automated, Personalized Diabetes Management Systems, (6) Novel Sensing Strategies, Hormone Formulations and Delivery to Optimize Close-loop Systems, (7) Special Topic: Clinical and Real-world Viability of IP-IP Systems. "Fully automated closed-loop insulin delivery using the IP route," (8) Round-table Panel: Closed-loop performance: What to Expect and What are the Best Metrics to Assess it, and (9) Round-table Discussion: What is Needed for More Adaptable, Accessible, and Usable Future Generation of Systems? How to Promote Equitable Innovation? This article summarizes the discussions of the Workshop.


Diabetes Mellitus, Type 1 , Pancreas, Artificial , Humans , Diabetes Mellitus, Type 1/drug therapy , Insulin/therapeutic use , Blood Glucose , Artificial Intelligence , Insulin Infusion Systems , Insulin, Regular, Human/therapeutic use , Automation , Hypoglycemic Agents/therapeutic use
5.
Comput Methods Programs Biomed ; 242: 107830, 2023 Dec.
Article En | MEDLINE | ID: mdl-37806122

BACKGROUND: Automated insulin delivery (AID) has represented a breakthrough in managing type 1 diabetes (T1D), showing safe and effective glucose control extensively across the board. However, metabolic variability still poses a challenge to commercial hybrid closed-loop (HCL) solutions, whose performance depends on customizable insulin therapy profiles. In this work, we propose an Identification-Replay-Optimization (IRO) approach to optimize gradually and safely such profiles for the Control-IQ AID algorithm. METHODS: Closed-loop data are generated using the full adult cohort of the UVA/Padova T1D simulation platform in diverse glycemic scenarios. For each subject, daily records are processed and used to estimate a personalized model of the underlying insulin-glucose dynamics. Every two weeks, all identified models are integrated into an optimization procedure where daily basal and bolus profiles are adjusted so as to minimize the risks for hypo- and hyperglycemia. The proposed strategy is tested under different scenarios of metabolic and behavioral variability in order to evaluate the efficacy and convergence of the proposed strategy. Finally, glycemic metrics between cycles are compared using paired t-tests with p<0.05 as the significance threshold. RESULTS: Simulations reveal that the proposed IRO approach was able to improve glucose control over time by safely mitigating the risks for both hypo- and hyperglycemia. Furthermore, smaller changes were recommended at each cycle, indicating convergence when simulation conditions were maintained. CONCLUSIONS: The use of reliable simulation-driven tools capable of accurately reproducing field-collected data and predicting changes can substantially shorten the process of optimizing insulin therapy, adjusting it to metabolic changes and leading to improved glucose control.


Diabetes Mellitus, Type 1 , Hyperglycemia , Adult , Humans , Insulin , Diabetes Mellitus, Type 1/drug therapy , Hypoglycemic Agents , Blood Glucose/metabolism , Blood Glucose Self-Monitoring , Insulin Infusion Systems
6.
Diabetes Care ; 46(9): 1652-1658, 2023 09 01.
Article En | MEDLINE | ID: mdl-37478323

OBJECTIVE: Meals are a consistent challenge to glycemic control in type 1 diabetes (T1D). Our objective was to assess the glycemic impact of meal anticipation within a fully automated insulin delivery (AID) system among adults with T1D. RESEARCH DESIGN AND METHODS: We report the results of a randomized crossover clinical trial comparing three modalities of AID systems: hybrid closed loop (HCL), full closed loop (FCL), and full closed loop with meal anticipation (FCL+). Modalities were tested during three supervised 24-h admissions, where breakfast, lunch, and dinner were consumed per participant's home schedule, at a fixed time, and with a 1.5-h delay, respectively. Primary outcome was the percent time in range 70-180 mg/dL (TIR) during the breakfast postprandial period for FCL+ versus FCL. RESULTS: Thirty-five adults with T1D (age 44.5 ± 15.4 years; HbA1c 6.7 ± 0.9%; n = 23 women and n = 12 men) were randomly assigned. TIR for the 5-h period after breakfast was 75 ± 23%, 58 ± 21%, and 63 ± 19% for HCL, FCL, and FCL+, respectively, with no significant difference between FCL+ and FCL. For the 2 h before dinner, time below range (TBR) was similar for FCL and FCL+. For the 5-h period after dinner, TIR was similar for FCL+ and FCL (71 ± 34% vs. 72 ± 29%; P = 1.0), whereas TBR was reduced in FCL+ (median 0% [0-0%] vs. 0% [0-0.8%]; P = 0.03). Overall, 24-h control for HCL, FCL, and FCL+ was 86 ± 10%, 77 ± 11%, and 77 ± 12%, respectively. CONCLUSIONS: Although postprandial control remained optimal with hybrid AID, both fully AID solutions offered overall TIR >70% with similar or lower exposure to hypoglycemia. Anticipation did not significantly improve postprandial control in AID systems but also did not increase hypoglycemic risk when meals were delayed.


Diabetes Mellitus, Type 1 , Insulin , Male , Humans , Adult , Female , Middle Aged , Insulin/therapeutic use , Diabetes Mellitus, Type 1/drug therapy , Blood Glucose , Hypoglycemic Agents/therapeutic use , Meals , Insulin, Regular, Human/therapeutic use , Insulin Infusion Systems , Cross-Over Studies
7.
Diabetes Technol Ther ; 25(4): 219-230, 2023 04.
Article En | MEDLINE | ID: mdl-36595379

Background: Ultrarapid-acting insulin analogs that could improve or even prevent postprandial hyperglycemia are now available for both research and clinical care. However, clear glycemic benefits remain elusive, especially when combined with automated insulin delivery (AID) systems. In this work, we study two insulin formulations in silico and highlight adjustments of both open-loop and closed-loop insulin delivery therapies as a critical step to achieve clinically meaningful improvements. Methods: Subcutaneous insulin transport models for two faster analogs, Fiasp (Novo Nordisk, Bagsværd, Denmark) and AT247 (Arecor, Saffron Walden, United Kingdom), were identified using data collected from prior clamp experiments, and integrated into the UVA/Padova type 1 diabetes simulator (adult cohort, N = 100). Pump therapy parameters and the aggressiveness of our full closed-loop algorithm were adapted to the new insulin pharmacokinetic and pharmacodynamic profiles through a sequence of in silico studies. Finally, we assessed these analogs' glycemic impact with and without modified therapy parameters in simulated conditions designed to match clinical trial data. Results: Simply switching to faster insulin analogs shows limited improvements in glycemic outcomes. However, when insulin acceleration is accompanied by therapy adaptation, clinical significance is found comparing time-in-range (70-180 mg/dL) with Aspart versus AT247 in open-loop (+5.1%); and Aspart versus Fiasp (+5.4%) or AT247 (+10.6%) in full closed-loop with no clinically significant differences in the exposure to hypoglycemia. Conclusion: In silico results suggest that properly adjusting intensive insulin therapy profiles, or AID tuning, to faster insulin analogs is necessary to obtain clinically significant improvements in glucose control.


Diabetes Mellitus, Type 1 , Insulin , Adult , Humans , Blood Glucose , Diabetes Mellitus, Type 1/drug therapy , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Insulin Aspart/therapeutic use , Insulin Infusion Systems , Insulin, Regular, Human/therapeutic use , Computer Simulation
8.
IEEE J Biomed Health Inform ; 27(1): 515-525, 2023 01.
Article En | MEDLINE | ID: mdl-36149995

OBJECTIVE: To develop and evaluate a novel Web-based Simulation Tool (WST) that brings simulation technologies to people with Type 1 Diabetes (T1D), enabling unique patient-data interactions seamlessly on a daily basis. METHODS: A pilot clinical trial was conducted to assess system usability. The study consisted of one week of observation (Phase 1) and four weeks of interaction with WST (Phase 2). Responses to Technology Acceptance (TA) and Diabetes Distress Scale (DDS) questionnaires were collected, and follow-up interviews were conducted after Phase 2. RESULTS: Fifteen participants with T1D using Control-IQ technology (age: 36 ± 13 years, HbA1c: 6.5% ± 0.7%) completed all study procedures. Generated simulation models achieved a median Mean Absolute Relative Difference (MARD) of 6.8% [interquartile range, IQR: 5.1%, 9.1%]. A decrease in expected benefits (likely explained by issues with the third-party data collection system) and an increase in expected burdens were observed. On a 1-5 scale, ease of use, trust, and usefulness scores were 3 [3,4], 4 [3,4], and 4 [3,4], respectively. Time below 70 mg/dL decreased between Phases 1 and 2 (1.6% [0.7%,3.7%] vs 0.8% [0.5%,3.0%]). A reduction in mean emotional burden was also observed (2.5 ± 1.1 vs 2.1 ± 0.8). CONCLUSIONS: Results indicate that there was a learning curve to WST, but also that most participants trusted the system and found it useful in their diabetes care. SIGNIFICANCE: Simulation technologies like WST could be used by educators and patients to facilitate diabetes self-management, leading to better diabetes literacy and reducing associated distress.


Diabetes Mellitus, Type 1 , Self-Management , Adult , Humans , Middle Aged , Young Adult , Internet , Pilot Projects , Surveys and Questionnaires
9.
J Diabetes Sci Technol ; : 19322968221140401, 2022 Nov 24.
Article En | MEDLINE | ID: mdl-36424765

BACKGROUND: It has been shown that insulin acceleration by itself might not be sufficient to see clear improvements in glycemic metrics, and insulin therapy may need to be adjusted to fully leverage the extra safety margin provided by faster pharmacokinetic (PK) and pharmacodynamic (PD) profiles. The objective of this work is to explore how to perform such adjustments on a commercially available automated insulin delivery (AID) system. METHODS: Ultra-rapid lispro (URLi) is modeled within the UVA/Padova simulation platform using data from previously published clamp studies. The Control-IQ AID algorithm is selected as it leverages carbohydrate-to-insulin ratio (CR in g/U), correction factor (CF in mg/dL/U), and basal rate (BR in U/h) daily profiles that are fully customizable. An experiment roadmap is proposed to understand how to safely modify these profiles when switching from lispro to URLi. RESULTS: Simulations show that a 7% decrease in CR (approximately an 8% increase in prandial insulin) and a 7.5% increase in BR lead to cumulative improvements in glucose control with URLi. Comparing with baseline metrics using lispro, a clinically significant increase in time in the range of 70 to 180 mg/dL (overall: 70.2%-75.2%, P < .001; 6 am-12 am: 62.4%-68.5%, P < .001) and a reduction in time below 70 mg/dL (overall: 1.8%-1.2%, P < .001; 6 am-12 am: 1.8%-1.3%, P < .001) were observed. CONCLUSION: Properly adjusting therapy parameters allows to fully leverage glucose control benefits provided by faster insulin analogues, opening opportunities to take another step forward into a next generation of more effective AID solutions.

11.
J Diabetes Sci Technol ; 16(1): 52-60, 2022 Jan.
Article En | MEDLINE | ID: mdl-34861786

INTRODUCTION: Hyperglycemia following meals is a recurring challenge for people with type 1 diabetes, and even the most advanced available automated systems currently require manual input of carbohydrate amounts. To progress toward fully automated systems, we present a novel control system that can automatically deliver priming boluses and/or anticipate eating behaviors to improve postprandial full closed-loop control. METHODS: A model predictive control (MPC) system was enhanced by an automated bolus system reacting to early glucose rise and/or a multistage MPC (MS-MPC) framework to anticipate historical patterns. Priming was achieved by detecting large glycemic disturbances, such as meals, and delivering a fraction of the patient's total daily insulin (TDI) modulated by the disturbance's likelihood (bolus priming system [BPS]). In the anticipatory module, glycemic disturbance profiles were generated from historical data using clustering to group days with similar behaviors; the probability of each cluster is then evaluated at every controller step and informs the MS-MPC framework to anticipate each profile. We tested four configurations: MPC, MPC + BPS, MS-MPC, and MS-MPC + BPS in simulation to contrast the effect of each controller module. RESULTS: Postprandial time in range was highest for MS-MPC + BPS: 60.73 ± 25.39%, but improved with each module: MPC + BPS: 56.95±25.83 and MS-MPC: 54.83 ± 26.00%, compared with MPC: 51.79 ± 26.12%. Exposure to hypoglycemia was maintained for all controllers (time below 70 mg/dL <0.5%), and improvement came primarily from a reduction in postprandial time above range (MS-MPC + BPS: 39.10 ± 25.32%, MPC + BPS: 42.99 ± 25.81%, MS-MPC: 45.09 ± 25.96%, MPC: 48.18 ± 26.09%). CONCLUSIONS: The BPS and anticipatory disturbance profiles improved blood glucose control and were most efficient when combined.


Diabetes Mellitus, Type 1 , Hyperglycemia , Pancreas, Artificial , Algorithms , Blood Glucose , Humans , Hyperglycemia/prevention & control , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Insulin Infusion Systems
12.
Comput Methods Programs Biomed ; 211: 106401, 2021 Nov.
Article En | MEDLINE | ID: mdl-34560603

BACKGROUND AND OBJECTIVE: Glycemic control, especially meal-related disturbance rejection, has proven to be a major challenge for people with type 1 diabetes. In this manuscript, we introduce a novel, personalized, advanced hybrid insulin infusion system (a.k.a. artificial pancreas) based on the Model Predictive Control (MPC) methodology to adjust insulin infusion while automatically rejecting uninformed meals. METHODS: The proposed advanced hybrid closed-loop system relies on the integration of three key elements: (i) an adaptive personalized MPC control law that modulates the control strength depending on recent past control actions, glucose measurements, and its derivative, (ii) an automatic Bolus Priming System (BPS) that commands additional insulin injections safely upon the detection of enabling metabolic conditions (e.g., an unacknowledged meal), and (iii) a new hyperglycemia mitigation system to avoid prevailing hyperglycemia. The benefits of the proposed system are demonstrated through simulations and tests using the most up-to-date Type 1 UVA/Padova simulator as preclinical stage prior to in vivo clinical tests. We used a legacy algorithm (USS Virginia), currently used in clinical care, as a benchmark controller. RESULTS: Overall, the proposed control strategy enhanced by an automatic BPS improves glycemic control when compared with an available system. When a large meal is not announced (80g CHO), the proposed controller outperformed the legacy controller in time-in-target-range TIR (postprandial and overnight) and time-in-tight-range TTR (overall, postprandial, and overnight). CONCLUSION: The integration of a novel BPS into an advanced control system allowed to automatically reject unannounced meals. Exhaustive simulation studies indicated the safety and feasibility of the proposed controller to be deployed in human clinical trials.


Diabetes Mellitus, Type 1 , Pancreas, Artificial , Algorithms , Blood Glucose , Blood Glucose Self-Monitoring , Computer Simulation , Diabetes Mellitus, Type 1/drug therapy , Humans , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Insulin Infusion Systems , Meals
13.
J Diabetes Sci Technol ; 15(4): 833-841, 2021 07.
Article En | MEDLINE | ID: mdl-32546001

BACKGROUND: Controlling postprandial blood glucose without the benefit of an appropriately sized premeal insulin bolus has been challenging given the delays in absorption and action of subcutaneously injected insulin during conventional and artificial pancreas (AP) system diabetes treatment. We aim to understand the impact of accelerating insulin and increasing aggressiveness of the AP controller as potential solutions to address the postprandial hyperglycemia challenge posed by unannounced meals through a simulation study. METHODS: Accelerated rapid-acting insulin analogue is modeled within the UVA/Padova simulation platform by uniformly reducing its pharmacokinetic time constants (α multiplier) and used with a model predictive control, where the controller's aggressiveness depends on α. Two sets of single-meal simulations were performed: (1) where we only tune the controller's aggressiveness and (2) where we also accelerate insulin absorption and action to assess postprandial glycemic control during each intervention. RESULTS: Mean percent of time spent within the 70 to 180 mg/dL postprandial glycemic range is significantly higher in set (2) than in set (1): 79.9, 95% confidence interval [77.0, 82.7] vs 88.8 [86.8, 90.9] ([Note to typesetter: Set all unnecessary math in text format and insert appropriate spaces between operators.] P < .05) for α = 2, and 81.4 [78.6, 84.3] vs 94.1 [92.6, 95.6] (P < .05) for α = 3. A decrease in percent of time below 70 mg/dL is also detected: 0.9 [0.4, 2.2] vs 0.6 [0.2, 1.4] (P = .23) for α = 2 and 1.4 [0.7, 2.8] vs 0.4 [0.1, 1.4] (P < .05) for α = 3. CONCLUSION: These proof-of-concept simulations suggest that an AP without prandial insulin boluses combined with significantly faster insulin analogues could match the glycemic performance obtained with an optimal hybrid AP.


Diabetes Mellitus, Type 1 , Pancreas, Artificial , Algorithms , Blood Glucose , Computer Simulation , Diabetes Mellitus, Type 1/drug therapy , Humans , Hypoglycemic Agents , Insulin , Meals , Postprandial Period
14.
Diabetes Technol Ther ; 23(4): 277-285, 2021 04.
Article En | MEDLINE | ID: mdl-33270531

Objective: Physical activity is a major challenge to glycemic control for people with type 1 diabetes. Moderate-intensity exercise often leads to steep decreases in blood glucose and hypoglycemia that closed-loop control systems have so far failed to protect against, despite improving glycemic control overall. Research Design and Methods: Fifteen adults with type 1 diabetes (42 ± 13.5 years old; hemoglobin A1c 6.6% ± 1.0%; 10F/5M) participated in a randomized crossover clinical trial comparing two hybrid closed-loop (HCL) systems, a state-of-the-art hybrid model predictive controller and a modified system designed to anticipate and detect unannounced exercise (APEX), during two 32-h supervised admissions with 45 min of planned moderate activity, following 4 weeks of data collection. Primary outcome was the number of hypoglycemic episodes during exercise. Continuous glucose monitor (CGM)-based metrics and hypoglycemia are also reported across the entire admissions. Results: The APEX system reduced hypoglycemic episodes overall (9 vs. 33; P = 0.02), during exercise (5 vs. 13; P = 0.04), and in the 4 h following (2 vs. 11; P = 0.02). Overall CGM median percent time <70 mg/dL decreased as well (0.3% vs. 1.6%; P = 0.004). This protection was obtained with no significant increase in time >180 mg/dL (18.5% vs. 16.6%, P = 0.15). Overnight control was notable for both systems with no hypoglycemia, median percent in time 70-180 mg/dL at 100% and median percent time 70-140 mg/dL at ∼96% for both. Conclusions: A new closed-loop system capable of anticipating and detecting exercise was proven to be safe and feasible and outperformed a state-of-the-art HCL, reducing participants' exposure to hypoglycemia during and after moderate-intensity physical activity. ClinicalTrials.gov NCT03859401.


Diabetes Mellitus, Type 1 , Hypoglycemia , Pancreas, Artificial , Adult , Blood Glucose , Cross-Over Studies , Diabetes Mellitus, Type 1/drug therapy , Exercise , Humans , Hypoglycemia/prevention & control , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Insulin Infusion Systems , Middle Aged
15.
J Diabetes Sci Technol ; 15(6): 1326-1336, 2021 11.
Article En | MEDLINE | ID: mdl-33218280

BACKGROUND: The capacity to replay data collected in real life by people with type 1 diabetes mellitus (T1DM) would lead to individualized (vs population) assessment of treatment strategies to control blood glucose and possibly true personalization. Patek et al introduced such a technique, relying on regularized deconvolution of a population glucose homeostasis model to estimate a residual additive signal and reproduce the experimental data; therefore, allowing the subject-specific replay of what-if scenarios by altering the model inputs (eg, insulin). This early method was shown to have a limited domain of validity. We propose and test in silico a similar approach and extend the method applicability. METHODS: A subject-specific model personalization of insulin sensitivity and meal-absorption parameters is performed. The University of Virginia (UVa)/Padova T1DM simulator is used to generate experimental scenarios and test the ability of the methodology to accurately reproduce changes in glucose concentration to alteration in meal and insulin inputs. Method performance is assessed by comparing true (UVa/Padova simulator) and replayed glucose traces, using the mean absolute relative difference (MARD) and the Clarke error grid analysis (CEGA). RESULTS: Model personalization led to a 9.08 and 6.07 decrease in MARD over a prior published method of replaying altered insulin scenarios for basal and bolus changes, respectively. Replay simulations achieved high accuracy, with MARD <10% and more than 95% of readings falling in the CEGA A-B zones for a wide range of interventions. CONCLUSIONS: In silico studies demonstrate that the proposed method for replay simulation is numerically and clinically valid over broad changes in scenario inputs, indicating possible use in treatment optimization.


Diabetes Mellitus, Type 1 , Algorithms , Blood Glucose , Blood Glucose Self-Monitoring , Computer Simulation , Diabetes Mellitus, Type 1/drug therapy , Humans , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Insulin Infusion Systems
16.
IEEE J Biomed Health Inform ; 24(9): 2681-2689, 2020 09.
Article En | MEDLINE | ID: mdl-31995506

In this work, a low-order model designed for glucose regulation in Type 1 Diabetes Mellitus (T1DM) is obtained from the UVA/Padova metabolic simulator. It captures not only the nonlinear behavior of the glucose-insulin system, but also intra-patient variations related to daily insulin sensitivity ( SI) changes. To overcome the large inter-subject variability, the model can also be personalized based on a priori patient information. The structure is amenable for linear parameter varying (LPV) controller design, and represents the dynamics from the subcutaneous insulin input to the subcutaneous glucose output. The efficacy of this model is evaluated in comparison with a previous control-oriented model which in turn is an improvement of previous models. Both models are compared in terms of their open- and closed-loop differences with respect to the UVA/Padova model. The proposed model outperforms previous T1DM control-oriented models, which could potentially lead to more robust and reliable controllers for glycemia regulation.


Diabetes Mellitus, Type 1 , Pancreas, Artificial , Computer Simulation , Diabetes Mellitus, Type 1/drug therapy , Humans , Insulin/therapeutic use , Insulin Infusion Systems
17.
J Diabetes Sci Technol ; 13(6): 1054-1064, 2019 11.
Article En | MEDLINE | ID: mdl-31679400

BACKGROUND: Maintaining glycemic equilibrium can be challenging for people living with type 1 diabetes (T1D) as many factors (eg, length, type, duration, insulin on board, stress, and training) will impact the metabolic changes triggered by physical activity potentially leading to both hypoglycemia and hyperglycemia. Therefore, and despite the noted health benefits, many individuals with T1D do not exercise as much as their healthy peers. While technology advances have improved glucose control during and immediately after exercise, it remains one of the key limitations of artificial pancreas (AP) systems, largely because stopping insulin at the onset of exercise may not be enough to prevent impending, exercise-induced hypoglycemia. METHODS: A hybrid AP algorithm with subject-specific exercise behavior recognition and anticipatory action is designed to prevent hypoglycemic events during and after moderate-intensity exercise. Our approach relies on a number of key innovations, namely, an activity informed premeal bolus calculator, personalized exercise pattern recognition, and a multistage model predictive control (MS-MPC) strategy that can transition between reactive and anticipatory modes. This AP design was evaluated on 100 in silico subjects from the most up-to-date FDA-accepted UVA/Padova metabolic simulator, emulating an outpatient clinical trial setting. Results with a baseline controller, a regular MPC (rMPC), are also included for comparison purposes. RESULTS: In silico experiments reveal that the proposed MS-MPC strategy markedly reduces the number of exercise-related hypoglycemic events (8 vs 68). CONCLUSION: An anticipatory mode for insulin administration of a monohormonal AP controller reduces the occurrence of hypoglycemia during moderate-intensity exercise.


Blood Glucose/analysis , Diabetes Mellitus, Type 1/drug therapy , Exercise/physiology , Hypoglycemia/prevention & control , Hypoglycemic Agents/adverse effects , Insulin/adverse effects , Algorithms , Blood Glucose Self-Monitoring , Computer Simulation , Diabetes Mellitus, Type 1/blood , Humans , Hypoglycemia/chemically induced , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/therapeutic use , Insulin/administration & dosage , Insulin/therapeutic use , Models, Biological , Pancreas, Artificial
18.
J Diabetes Sci Technol ; 13(6): 1035-1043, 2019 11.
Article En | MEDLINE | ID: mdl-31339059

BACKGROUND: Either under standard basal-bolus treatment or hybrid closed-loop control, subjects with type 1 diabetes are required to count carbohydrates (CHOs). However, CHO counting is not only burdensome but also prone to errors. Recently, an artificial pancreas algorithm that does not require premeal insulin boluses-the so-called automatic regulation of glucose (ARG)-was introduced. In its first pilot clinical study, although the exact CHO counting was not required, subjects still needed to announce the meal time and classify the meal size. METHOD: An automatic switching signal generator (SSG) is proposed in this work to remove the manual mealtime announcement from the control strategy. The SSG is based on a Kalman filter and works with continuous glucose monitoring readings only. RESULTS: The ARG algorithm with unannounced meals (ARGum) was tested in silico under the effect of different types of mixed meals and intrapatient variability, and contrasted with the ARG algorithm with announced meals (ARGam). Simulations reveal that, for slow-absorbing meals, the time in the euglycemic range, [70-180] mg/dL, increases using the unannounced strategy (ARGam: 78.1 [68.6-80.2]% (median [IQR]) and ARGum: 87.8 [84.5-90.6]%), while similar results were found with fast-absorbing meals (ARGam: 87.4 [86.0-88.9]% and ARGum: 87.6 [86.1-88.8]%). On the other hand, when intrapatient variability is considered, time in euglycemia is also comparable (ARGam: 81.4 [75.4-83.5]% and ARGum: 80.9 [77.0-85.1]%). CONCLUSION: In silico results indicate that it is feasible to perform an in vivo evaluation of the ARG algorithm with unannounced meals.


Blood Glucose/analysis , Diabetes Mellitus, Type 1/drug therapy , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Meals , Pancreas, Artificial , Algorithms , Blood Glucose Self-Monitoring , Computer Simulation , Diabetes Mellitus, Type 1/blood , Humans , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Postprandial Period
19.
J Diabetes Sci Technol ; 12(5): 914-925, 2018 09.
Article En | MEDLINE | ID: mdl-29998754

BACKGROUND: Emerging therapies such as closed-loop (CL) glucose control, also known as artificial pancreas (AP) systems, have shown significant improvement in type 1 diabetes mellitus (T1DM) management. However, demanding patient intervention is still required, particularly at meal times. To reduce treatment burden, the automatic regulation of glucose (ARG) algorithm mitigates postprandial glucose excursions without feedforward insulin boluses. This work assesses feasibility of this new strategy in a clinical trial. METHODS: A 36-hour pilot study was performed on five T1DM subjects to validate the ARG algorithm. Subjects wore a subcutaneous continuous glucose monitor (CGM) and an insulin pump. Insulin delivery was solely commanded by the ARG algorithm, without premeal insulin boluses. This was the first clinical trial in Latin America to validate an AP controller. RESULTS: For the total 36-hour period, results were as follows: average time of CGM readings in range 70-250 mg/dl: 88.6%, in range 70-180 mg/dl: 74.7%, <70 mg/dl: 5.8%, and <50 mg/dl: 0.8%. Results improved analyzing the final 15-hour period of this trial. In that case, the time spent in range was 70-250 mg/dl: 94.7%, in range 70-180 mg/dl: 82.6%, <70 mg/dl: 4.1%, and <50 mg/dl: 0.2%. During the last night the time spent in range was 70-250 mg/dl: 95%, in range 70-180 mg/dl: 87.7%, <70 mg/dl: 5.0%, and <50 mg/dl: 0.0%. No severe hypoglycemia occurred. No serious adverse events were reported. CONCLUSIONS: The ARG algorithm was successfully validated in a pilot clinical trial, encouraging further tests with a larger number of patients and in outpatient settings.


Algorithms , Diabetes Mellitus, Type 1/drug therapy , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Pancreas, Artificial , Adult , Blood Glucose Self-Monitoring , Female , Humans , Insulin Infusion Systems , Latin America , Male , Middle Aged , Pilot Projects , Postprandial Period
20.
J Diabetes Sci Technol ; 10(3): 744-53, 2016 05.
Article En | MEDLINE | ID: mdl-27022097

BACKGROUND: Time-varying dynamics is one of the main issues for achieving safe blood glucose control in type 1 diabetes mellitus (T1DM) patients. In addition, the typical disturbances considered for controller design are meals, which increase the glucose level, and physical activity (PA), which increases the subject's sensitivity to insulin. In previous works the authors have applied a linear parameter-varying (LPV) control technique to manage unannounced meals. METHODS: A switched LPV controller that switches between 3 LPV controllers, each with a different level of aggressiveness, is designed to further cope with both unannounced meals and postprandial PA. Thus, the proposed control strategy has a "standard" mode, an "aggressive" mode, and a "conservative" mode. The "standard" mode is designed to be applied most of the time, while the "aggressive" mode is designed to deal only with hyperglycemia situations. On the other hand, the "conservative" mode is focused on postprandial PA control. RESULTS: An ad hoc simulator has been developed to test the proposed controller. This simulator is based on the distribution version of the UVA/Padova model and includes the effect of PA based on Schiavon.(1) The test results obtained when using this simulator indicate that the proposed control law substantially reduces the risk of hypoglycemia with the conservative strategy, while the risk of hyperglycemia is scarcely affected. CONCLUSIONS: It is demonstrated that the announcement, or anticipation, of exercise is indispensable for letting a mono-hormonal artificial pancreas deal with the consequences of postprandial PA. In view of this the proposed controller allows switching into a conservative mode when notified of PA by the user.


Diabetes Mellitus, Type 1/blood , Exercise/physiology , Hypoglycemia/prevention & control , Models, Theoretical , Pancreas, Artificial , Blood Glucose/analysis , Computer Simulation , Humans , Hypoglycemia/blood
...