Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38339194

RESUMEN

Exposure to hydrochloric acid (HCl) can provoke acute and chronic lung injury. Because of its extensive production for industrial use, frequent accidental exposures occur, making HCl one of the top five chemicals causing inhalation injuries. There are no Food and Drug Administration (FDA)-approved treatments for HCl exposure. Heat shock protein 90 (HSP90) inhibitors modulate transforming growth factor-ß (TGF-ß) signaling and the development of chemical-induced pulmonary fibrosis. However, little is known on the role of Heat Shock Protein 70 (HSP70) during injury and treatment with HSP90 inhibitors. We hypothesized that administration of geranylgeranyl-acetone (GGA), an HSP70 inducer, or gefitinib (GFT), an HSP70 suppressant, alone or in combination with the HSP90 inhibitor, TAS-116, would improve or worsen, respectively, HCl-induced chronic lung injury in vivo and endothelial barrier dysfunction in vitro. GGA, alone, improved HCl-induced human lung microvascular endothelial cells (HLMVEC) barrier dysfunction and, in combination with TAS-116, improved the protective effect of TAS-116. In mice, GGA reduced HCl toxicity and while TAS-116 alone blocked HCl-induced chronic lung injury, co-administration with GGA, resulted in further improvement. Conversely, GFT potentiated HCl-induced barrier dysfunction and impaired the antidotal effects of TAS-116. We conclude that combined treatments with HSP90 inhibitors and HSP70 inducers may represent a novel therapeutic approach to manage HCl-induced chronic lung injury and pulmonary fibrosis.


Asunto(s)
Antineoplásicos , Benzamidas , Lesión Pulmonar , Fibrosis Pulmonar , Pirazoles , Ratones , Humanos , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/tratamiento farmacológico , Ácido Clorhídrico/toxicidad , Proteínas HSP70 de Choque Térmico/metabolismo , Células Endoteliales/metabolismo , Antineoplásicos/efectos adversos , Gefitinib/efectos adversos , Proteínas HSP90 de Choque Térmico/metabolismo
2.
Histol Histopathol ; 39(2): 131-144, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37712224

RESUMEN

Acute respiratory distress syndrome (ARDS) is a severe respiratory condition characterized by increased lung permeability, hyper-inflammatory state, and fluid leak into the alveolar spaces. ARDS is a heterogeneous disease, with multiple direct and indirect causes that result in a mortality of up to 40%. Due to the ongoing Covid-19 pandemic, its incidence has increased up to ten-fold. Extracellular vesicles (EVs) are small liposome-like particles that mediate intercellular communication and play a major role in ARDS pathophysiology. Indeed, they participate in endothelial barrier dysfunction and permeability, neutrophil, and macrophage activation, and also in the development of a hypercoagulable state. A more thorough understanding of the variegated and cell-specific functions of EVs may lead to the development of safe and effective therapeutics. In this review, we have collected evidence of EVs role in ARDS, revise the main mechanisms of production and internalization and summarize the current therapeutical approaches that have shown the ability to modulate EV signaling.


Asunto(s)
Vesículas Extracelulares , Síndrome de Dificultad Respiratoria , Humanos , Pandemias , Síndrome de Dificultad Respiratoria/terapia , Pulmón , Transducción de Señal
3.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446096

RESUMEN

Reversing the pulse polarity, i.e., changing the electric field direction by 180°, inhibits electroporation and electrostimulation by nanosecond electric pulses (nsEPs). This feature, known as "bipolar cancellation," enables selective remote targeting with nsEPs and reduces the neuromuscular side effects of ablation therapies. We analyzed the biophysical mechanisms and measured how cancellation weakens and is replaced by facilitation when nsEPs are applied from different directions at angles from 0 to 180°. Monolayers of endothelial cells were electroporated by a train of five pulses (600 ns) or five paired pulses (600 + 600 ns) applied at 1 Hz or 833 kHz. Reversing the electric field in the pairs (180° direction change) caused 2-fold (1 Hz) or 20-fold (833 kHz) weaker electroporation than the train of single nsEPs. Reducing the angle between pulse directions in the pairs weakened cancellation and replaced it with facilitation at angles <160° (1 Hz) and <130° (833 kHz). Facilitation plateaued at about three-fold stronger electroporation compared to single pulses at 90-100° angle for both nsEP frequencies. The profound dependence of the efficiency on the angle enables novel protocols for highly selective focal electroporation at one electrode in a three-electrode array while avoiding effects at the other electrodes. Nanosecond-resolution imaging of cell membrane potential was used to link the selectivity to charging kinetics by co- and counter-directional nsEPs.


Asunto(s)
Electroporación , Células Endoteliales , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular , Electroporación/métodos , Terapia de Electroporación
4.
SLAS Discov ; 28(6): 249-254, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36796645

RESUMEN

The genesis of most older medicinal agents has generally been empirical. During the past one and a half centuries, at least in the Western countries, discovering and developing drugs has been primarily the domain of pharmaceutical companies largely built upon concepts emerging from organic chemistry. Public sector funding for the discovery of new therapeutics has more recently stimulated local, national, and international groups to band together and focus on new human disease targets and novel treatment approaches. This Perspective describes one contemporary example of a newly formed collaboration that was simulated by a regional drug discovery consortium. University of Virginia, Old Dominion University, and a university spinout company, KeViRx, Inc., partnered under a NIH Small Business Innovation Research grant, to produce potential therapeutics for acute respiratory distress syndrome resulting from the ongoing COVID-19 pandemic.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Humanos , SARS-CoV-2 , Pandemias , Virginia , Desarrollo de Medicamentos , Descubrimiento de Drogas , Síndrome de Dificultad Respiratoria/tratamiento farmacológico
5.
Front Cardiovasc Med ; 9: 923081, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35928931

RESUMEN

Cardiovascular disease (CVD) is the most prominent cause of death of adults in the United States with coronary artery disease being the most common type of CVD. Following a myocardial event, the coronary endothelium plays an important role in the recovery of the ischemic myocardium. Specifically, endothelial cells (EC) must be able to elicit a robust angiogenic response necessary for tissue revascularization and repair. However, local or distant cues may prevent effective revascularization. Extracellular vesicles (EV) are produced by all cells and endothelium is a rich source of EVs that have access to the main circulation thereby potentially impacting local and distant tissue function. Systemic inflammation associated with conditions such as obesity as well as the acute inflammatory response elicited by a cardiac event can significantly increase the EV release by endothelium and alter their miRNA, protein or lipid cargo. Our laboratory has previously shown that EVs released by adipose tissue endothelial cells exposed to chronic inflammation have angiostatic effects on naïve adipose tissue EC in vitro. Whether the observed effect is specific to EVs from adipose tissue endothelium or is a more general feature of the endothelial EVs exposed to pro-inflammatory cues is currently unclear. The objective of this study was to investigate the angiostatic effects of EVs produced by EC from the coronary artery and adipose microvasculature exposed to pro-inflammatory cytokines (PIC) on naïve coronary artery EC. We have found that EVs from both EC sources have angiostatic effects on the coronary endothelium. EVs produced by cells in a pro-inflammatory environment reduced proliferation and barrier function of EC without impacting cellular senescence. Some of these functional effects could be attributed to the miRNA cargo of EVs. Several miRNAs such as miR-451, let-7, or miR-23a impact on multiple pathways responsible for proliferation, cellular permeability and angiogenesis. Collectively, our data suggests that EVs may compete with pro-angiogenic cues in the ischemic myocardium therefore slowing down the repair response. Acute treatments with inhibitors that prevent endogenous EV release immediately after an ischemic event may contribute to better efficacy of therapeutic approaches using functionalized exogenous EVs or other pro-angiogenic approaches.

6.
Am J Pathol ; 192(7): 990-1000, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35483427

RESUMEN

During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, alcohol consumption increased markedly. Nearly one in four adults reported drinking more alcohol to cope with stress. Chronic alcohol abuse is now recognized as a factor complicating the course of acute respiratory distress syndrome and increasing mortality. To investigate the mechanisms behind this interaction, a combined acute respiratory distress syndrome and chronic alcohol abuse mouse model was developed by intratracheally instilling the subunit 1 (S1) of SARS-CoV-2 spike protein (S1SP) in K18-human angiotensin-converting enzyme 2 (ACE2) transgenic mice that express the human ACE2 receptor for SARS-CoV-2 and were kept on an ethanol diet. Seventy-two hours after S1SP instillation, mice on an ethanol diet showed a strong decrease in body weight, a dramatic increase in white blood cell content of bronchoalveolar lavage fluid, and an augmented cytokine storm, compared with S1SP-treated mice on a control diet. Histologic examination of lung tissue showed abnormal recruitment of immune cells in the alveolar space, abnormal parenchymal architecture, and worsening Ashcroft score in S1SP- and alcohol-treated animals. Along with the activation of proinflammatory biomarkers [NF-κB, STAT3, NLR family pyrin domain-containing protein 3 (NLRP3) inflammasome], lung tissue homogenates from mice on an alcohol diet showed overexpression of ACE2 compared with mice on a control diet. This model could be useful for the development of therapeutic approaches against alcohol-exacerbated coronavirus disease 2019.


Asunto(s)
Lesión Pulmonar Aguda , Alcoholismo , Enzima Convertidora de Angiotensina 2 , COVID-19 , Síndrome de Dificultad Respiratoria , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/virología , Animales , COVID-19/patología , Etanol/efectos adversos , Humanos , Pulmón/patología , Ratones , Ratones Transgénicos , Peptidil-Dipeptidasa A/metabolismo , Síndrome de Dificultad Respiratoria/virología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética
7.
Am J Pathol ; 192(6): 837-846, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35351468

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a dramatic disease without cure. The US Food and Drug Administration-approved drugs, pirfenidone and nintedanib, only slow disease progression. The clinical investigation of novel therapeutic approaches for IPF is an unmet clinical need. Nucleotide-binding oligomerization domain-like receptor or NOD-like receptors are pattern recognition receptors capable of binding a large variety of stress factors. NLR family pyrin domain-containing protein 3 (NLRP3), once activated, promotes IL-1ß, IL-18 production, and innate immune responses. Multiple reports indicate that the inflammasome NLRP3 is overactivated in IPF patients, leading to increased production of class I IL and collagens. Similarly, data from animal models of pulmonary fibrosis confirm the role of NLRP3 in the development of chronic lung injury and pulmonary fibrosis. This report provides a review of the evidence of NLRP3 activation in IPF and of NLRP3 inhibition in different animal models of fibrosis, and highlights the recent advances in direct and indirect NLRP3 inhibitors.


Asunto(s)
Fibrosis Pulmonar Idiopática , Inflamasomas , Animales , Proteínas Portadoras/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Dominio Pirina
8.
Cells ; 11(6)2022 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-35326496

RESUMEN

Hydrochloric acid (HCl) exposure causes asthma-like conditions, reactive airways dysfunction syndrome, and pulmonary fibrosis. Heat Shock Protein 90 (HSP90) is a molecular chaperone that regulates multiple cellular processes. HSP90 inhibitors are undergoing clinical trials for cancer and are also being studied in various pre-clinical settings for their anti-inflammatory and anti-fibrotic effects. Here we investigated the ability of the heat shock protein 90 (HSP90) inhibitor AT13387 to prevent chronic lung injury induced by exposure to HCl in vivo and its protective role in the endothelial barrier in vitro. We instilled C57Bl/6J mice with 0.1N HCl (2 µL/g body weight, intratracheally) and after 24 h began treatment with vehicle or AT13387 (10 or 15 mg/kg, SC), administered 3×/week; we analyzed histological, functional, and molecular markers 30 days after HCl. In addition, we monitored transendothelial electrical resistance (TER) and protein expression in a monolayer of human lung microvascular endothelial cells (HLMVEC) exposed to HCl (0.02 N) and treated with vehicle or AT13387 (2 µM). HCl provoked persistent alveolar inflammation; activation of profibrotic pathways (MAPK/ERK, HSP90); increased deposition of collagen, fibronectin and elastin; histological evidence of fibrosis; and a decline in lung function reflected in a downward shift in pressure-volume curves, increased respiratory system resistance (Rrs), elastance (Ers), tissue damping (G), and hyperresponsiveness to methacholine. Treatment with 15 mg/kg AT13387reduced alveolar inflammation, fibrosis, and NLRP3 staining; blocked activation of ERK and HSP90; and attenuated the deposition of collagen and the development of chronic lung injury and airway hyperreactivity. In vitro, AT13387 prevented HCl-induced loss of barrier function and AKT, ERK, and ROCK1 activation, and restored HSP70 and cofilin expression. The HSP90 inhibitor, AT13387, represents a promising drug candidate for chronic lung injury that can be administered subcutaneously in the field, and at low, non-toxic doses.


Asunto(s)
Antineoplásicos , Lesión Pulmonar , Fibrosis Pulmonar , Animales , Antineoplásicos/farmacología , Benzamidas , Colágeno/metabolismo , Células Endoteliales/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Ácido Clorhídrico/efectos adversos , Inflamación/patología , Isoindoles , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/prevención & control , Ratones , Ratones Endogámicos C57BL , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/prevención & control
9.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34445540

RESUMEN

Exposure to hydrochloric acid (HCl) represents a threat to public health. Children may inhale higher doses and develop greater injury because of their smaller airways and faster respiratory rate. We have developed a mouse model of pediatric exposure to HCl by intratracheally instilling p24 mice (mice 24 days old; 8-10 g) with 2 µL/g 0.1 N HCl, and compared the profile of lung injury to that in HCl-instilled adults (10 weeks old; 25-30 g) and their age-matched saline controls. After 30 days, alveolar inflammation was observed with increased proteinosis and mononuclear cells in the bronchoalveolar lavage fluid (BALF) in both HCl-instilled groups. Young p24 animals-but not adults-exhibited higher NLR family pyrin domain containing 3 (NLRP3) inflammasome levels. Increased amounts of Transforming Growth Factor-ß (TGF-ß) mRNA and its intracellular canonical and non-canonical pathways (p-Smad2 and p-ERK) were found in the lungs of both young and adult HCl-instilled mice. Constitutive age-related differences were observed in the levels of heat shock protein family (HSP70 and HSP90). HCl equally provoked the deposition of collagen and fibronectin; however, significant age-dependent differences were observed in the increase in elastin and tenascin C mRNA. HCl induced pulmonary fibrosis with an increased Ashcroft score, which was higher in adults, and a reduction in alveolar Mean Alveolar Linear Intercept (MALI). Young mice developed increased Newtonian resistance (Rn) and lower PV loops, while adults showed a higher respiratory system resistance and elastance. This data indicate that young p24 mice can suffer long-term complications from a single exposure to HCl, and can develop chronic lung injury characterized by a stronger persistent inflammation and lesser fibrotic pattern, mostly in the airways, differently from adults. Further data are required to characterize HCl time- and dose-dependent injury in young animals and to identify new key-molecular targets.


Asunto(s)
Lesión Pulmonar Aguda/patología , Envejecimiento , Líquido del Lavado Bronquioalveolar/química , Ácido Clorhídrico/toxicidad , Inflamación/patología , Fibrosis Pulmonar/patología , Lesión Pulmonar Aguda/inducido químicamente , Animales , Inflamación/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Fibrosis Pulmonar/inducido químicamente
10.
Cells ; 10(6)2021 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-34199261

RESUMEN

Exposure to hydrochloric acid (HCl) leads acutely to asthma-like symptoms, acute respiratory distress syndrome (ARDS), including compromised alveolo-capillary barrier, and respiratory failure. To better understand the direct effects of HCl on pulmonary endothelial function, we studied the characteristics of HCl-induced endothelial barrier dysfunction in primary cultures of human lung microvascular endothelial cells (HLMVEC), defined the involved molecular pathways, and tested the potentially beneficial effects of Heat Shock Protein 90 (HSP90) inhibitors. HCl impaired barrier function in a time- and concentration-dependent manner and was associated with activation of Protein Kinase B (AKT), Ras homolog family member A (RhoA) and myosin light chain 2 (MLC2), as well as loss of plasmalemmal VE-cadherin, rearrangement of cortical actin, and appearance of inter-endothelial gaps. Pre-treatment or post-treatment of HLMVEC with AUY-922, a third-generation HSP90 inhibitor, prevented and restored HCl-induced endothelial barrier dysfunction. AUY-922 increased the expression of HSP70 and inhibited the activation (phosphorylation) of extracellular-signal regulated kinase (ERK) and AKT. AUY-922 also prevented the HCl-induced activation of RhoA and MLC2 and the internalization of plasmalemmal VE-cadherin. We conclude that, by increasing the expression of cytoprotective proteins, interfering with actomyosin contractility, and enhancing the expression of junction proteins, inhibition of HSP90 may represent a useful approach for the management of HCl-induced endothelial dysfunction and acute lung injury.


Asunto(s)
Células Endoteliales/metabolismo , Ácido Clorhídrico/toxicidad , Pulmón/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Microvasos/metabolismo , Miosinas Cardíacas/metabolismo , Células Endoteliales/patología , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Isoxazoles/farmacología , Pulmón/irrigación sanguínea , Pulmón/patología , Microvasos/patología , Cadenas Ligeras de Miosina/metabolismo , Resorcinoles/farmacología , Síndrome de Dificultad Respiratoria/inducido químicamente , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/patología , Proteína de Unión al GTP rhoA/metabolismo
11.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L477-L484, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34156871

RESUMEN

Acute lung injury (ALI) leading to acute respiratory distress syndrome is the major cause of COVID-19 lethality. Cell entry of SARS-CoV-2 occurs via the interaction between its surface spike protein (SP) and angiotensin-converting enzyme-2 (ACE2). It is unknown if the viral spike protein alone is capable of altering lung vascular permeability in the lungs or producing lung injury in vivo. To that end, we intratracheally instilled the S1 subunit of SARS-CoV-2 spike protein (S1SP) in K18-hACE2 transgenic mice that overexpress human ACE2 and examined signs of COVID-19-associated lung injury 72 h later. Controls included K18-hACE2 mice that received saline or the intact SP and wild-type (WT) mice that received S1SP. K18-hACE2 mice instilled with S1SP exhibited a decline in body weight, dramatically increased white blood cells and protein concentrations in bronchoalveolar lavage fluid (BALF), upregulation of multiple inflammatory cytokines in BALF and serum, histological evidence of lung injury, and activation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways in the lung. K18-hACE2 mice that received either saline or SP exhibited little or no evidence of lung injury. WT mice that received S1SP exhibited a milder form of COVID-19 symptoms, compared with the K18-hACE2 mice. Furthermore, S1SP, but not SP, decreased cultured human pulmonary microvascular transendothelial resistance (TER) and barrier function. This is the first demonstration of a COVID-19-like response by an essential virus-encoded protein by SARS-CoV-2 in vivo. This model of COVID-19-induced ALI may assist in the investigation of new therapeutic approaches for the management of COVID-19 and other coronaviruses.


Asunto(s)
Lesión Pulmonar Aguda/patología , COVID-19/complicaciones , Permeabilidad de la Membrana Celular , Células Endoteliales/patología , Pulmón/patología , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/metabolismo , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/metabolismo , Animales , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/virología , Humanos , Pulmón/metabolismo , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Subunidades de Proteína , Glicoproteína de la Espiga del Coronavirus/genética , Replicación Viral
12.
Exp Lung Res ; 46(6): 203-216, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32400213

RESUMEN

Aim/Purpose: Exposure to high levels of hydrochloric acid (HCl) is associated with severe lung injury including both acute inflammation and chronic lung disease, which leads to the development of pulmonary fibrosis. Currently, there are no specific therapeutic agents for HCl-induced lung injury. Heat shock protein 90 (HSP90) has been implicated in the pathogenesis of pulmonary fibrosis. Thus, we have used a murine model of intra-tracheal acid instillation to investigate the antidotal effects of AUY-922, a small molecule HSP90 inhibitor, already in clinical trials for various types of cancer, against HCl-induced chronic lung injury and pulmonary fibrosis.Methods: HCl (0.1 N, 2 µl/g body weight) was instilled into male C57Bl/6J mice at day 0. After 24 h, mice began receiving 1 mg/kg AUY-922, 2x/week for 15 or 30 days.Results: AUY-922 suppressed the HCl-induced sustained inflammation, as reflected in the reduction of leukocyte and protein concentrations in bronchoalveolar lavage fluid, and inhibited the activation of pro-fibrotic biomarkers, ERK and HSP90. Furthermore, AUY-922 improved lung function, decreased the overexpression and accumulation of extracellular matrix proteins and dramatically reduced histologic evidence of fibrosis in the lungs of mice exposed to HCl.Conclusions: We conclude that AUY-922, and possibly other HSP90 inhibitors, successfully block the adverse effects associated with acute exposures to HCl and may represent an effective antidote against HCl-induced chronic lung injury and fibrosis.


Asunto(s)
Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Ácido Clorhídrico/farmacología , Isoxazoles/farmacología , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Resorcinoles/farmacología , Animales , Biomarcadores/metabolismo , Líquido del Lavado Bronquioalveolar , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Proteínas HSP90 de Choque Térmico/farmacología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Lesión Pulmonar/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fibrosis Pulmonar/metabolismo
13.
Inhal Toxicol ; 32(4): 141-154, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32362214

RESUMEN

Objective: Sulfur mustards are toxic agents used as a chemical warfare in the twentieth century. Exposure to nitrogen mustards (NM), their more water-soluble analogs, is associated with respiratory, dermatological, neurological, and systemic symptoms whose severity depends on dose and length of contact. Long-term effects of acute inhalation have been related to the development of chronic lung injury and pulmonary fibrosis whose precise mechanisms and potential antidotes are yet to be discovered.Materials and methods: We have developed a model of NM-induced pulmonary fibrosis by intratracheally instilling mechlorethamine hydrochloride into C57Bl/6J male mice.Results and Discussion: Following mechlorethamine exposure, strong early and milder late inflammatory responses were observed. Initially, the number of white blood cells and levels of protein and pro-inflammatory cytokines in the bronchoalveolar lavage fluid (BALF) increased, followed by increases in the number of macrophages and the levels of transforming growth factor-ß (TGF-ß), a pro-fibrotic mediator. Analysis of lung homogenates revealed increased phosphorylation of pro-fibrotic biomarkers, serine/threonine-selective protein kinases (p-ERK), and heat shock protein 90 (P-HSP90) at 10 and 30 days after exposure. Total collagen expression and deposition of extracellular matrix proteins also increased. Lung function measurements demonstrated the presence of both obstructive and restrictive disease in agreement with evidence of increased lower airway peribronchial collagen deposition and parenchymal fibrosis.Conclusions: We conclude that the mouse represents a useful model of NM-induced acute lung injury and chronic pulmonary fibrosis, the latter driven by the overexpression of TGF-ß, p-ERK, and P-HSP90. This model may prove useful in the pre-clinical development of antidotes and other countermeasures.


Asunto(s)
Lesión Pulmonar Aguda/inducido químicamente , Sustancias para la Guerra Química , Modelos Animales de Enfermedad , Mecloretamina , Fibrosis Pulmonar/inducido químicamente , Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/fisiopatología , Animales , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Enfermedad Crónica , Citocinas/inmunología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Recuento de Leucocitos , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Macrófagos/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Fibrosis Pulmonar/inmunología , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/fisiopatología , Factor de Crecimiento Transformador beta/metabolismo
14.
Inhal Toxicol ; 31(4): 147-160, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-31232121

RESUMEN

Objective: Accidental exposure to hydrochloric acid (HCl) is associated with acute lung injury in humans, development of long-term chronic airway obstruction, and fibrosis. However, the mechanisms responsible for the progression to pulmonary fibrosis remain unclear. We utilized a mouse model of progressive lung injury from a single exposure to HCl to investigate the effects of HCl on the lower respiratory tract. Materials and methods: HCl (0.05-0.3 N) or saline was injected intratracheally into male C57Bl/6J mice. At 1, 4, 10 and 30 days post instillation, bronchoalveolar lavage fluid (BALF) and lung tissues were collected and examined for multiple outcomes. Results and discussion: We observed an early inflammatory response and a late mild inflammation present even at 30 d post HCl exposure. Mice treated with HCl exhibited higher total leukocyte and protein levels in the BALF compared to the vehicle group. This was characterized by increased number of neutrophils, monocytes, and lymphocytes as well as pro-inflammatory cytokines during the first 4 d of injury. The late inflammatory response exhibited a predominant presence of mononuclear cells, increased permeability to protein, and higher levels of the pro-fibrotic mediator TGFß. Pro-fibrotic protein biomarkers, phosphorylated ERK, and HSP90, were also overexpressed at 10 and 30 d following HCl exposure. In vivo lung function measurements demonstrated lung dysfunction and chronic lung injury associated with increased lung hydroxyproline content and increased expression of extracellular matrix (ECM) proteins. The acute inflammation and severity of fibrosis increased in HCl-concentration dependent manner. Conclusions: Our findings suggest that the initial inflammatory response and pro-fibrotic biomarker upregulation may be linked to the progression of pulmonary fibrosis and airway dysfunction and may represent valuable therapeutic targets.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Ácido Clorhídrico/toxicidad , Exposición por Inhalación/efectos adversos , Lesión Pulmonar/inducido químicamente , Fibrosis Pulmonar/inducido químicamente , Animales , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Citocinas/análisis , Proteínas de la Matriz Extracelular/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Exposición por Inhalación/análisis , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Pruebas de Función Respiratoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...