Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Growth Horm IGF Res ; 39: 54-61, 2018 04.
Article En | MEDLINE | ID: mdl-29398370

INTRODUCTION: Pregnancy-associated plasma protein-A (PAPP-A) stimulates insulin-like growth factor (IGF)-I action through proteolytic cleavage of IGF binding protein-4 (IGFBP-4). Recently, stanniocalcin-2 (STC2) was discovered as an inhibitor of PAPP-A. Most members of the IGF system are expressed in adipose tissue (AT), but there is a relative paucity of information on the distribution of IGFBP-4, PAPP-A, and STC2 in different AT depots. Since IGF-I expression in AT is highly GH-dependent, we used bovine GH transgenic (bGH) and GH receptor knockout (GHR-/-) mice to investigate AT depot-specific expression patterns of IGFBP-4, PAPP-A, and STC2, and whether the regulation is GH-dependent. METHODS: Seven-month-old male bGH, GHR-/- and wild type (WT) control mice were used. Body composition was determined, and subcutaneous, epididymal, retroperitoneal, mesenteric and brown adipose tissue (BAT) depots were collected. RNA expression of Igfbp4, Pappa, and Stc2 was assessed by reverse transcription quantitative PCR and IGFBP-4 protein by Western blotting. RESULTS: Igfbp4, Pappa, and Stc2 RNA levels were differentially expressed in an AT depot-dependent manner in WT mice. Igfbp4 RNA levels were significantly higher in all white AT depots than in BAT. Pappa was most highly expressed in the mesenteric depot: levels were 7.5-fold higher in mesenteric than in subcutaneous AT (p < .001). Although intraabdominal in origin, epididymal and retroperitoneal Pappa expression levels were 69% and 68% lower, respectively, as compared to mesenteric levels (p < .001). Stc2 RNA expression was significantly higher in all intraabdominal white AT as compared to subcutaneous AT and BAT; levels in epididymal, retroperitoneal, and mesenteric were all more than three-fold higher than in subcutaneous AT (p < .001) and 12-fold higher than in BAT (p < .001). Gene expression patterns in bGH and GHR-/- mice mimicked those in WT mice, suggesting that GH does not affect the transcription of the STC2-PAPP-A-IGFBP-4-axis in AT. However, proteins levels of intact IGFBP-4 were significantly increased in bGH mice and decreased in GHR-/- mice, whereas the PAPP-A-generated IGFBP-4 fragment level was unaltered. CONCLUSION: Expression of Igfbp4, Pappa, and Stc2 differ between AT depots and is generally higher in white AT than in BAT. The transcription appears to occur in a GH-independent manner, whereas IGFBP-4 protein levels are highly influenced by altered GH activity.


Adipose Tissue/metabolism , Carrier Proteins/physiology , Glycoproteins/metabolism , Growth Hormone/physiology , Human Growth Hormone/administration & dosage , Insulin-Like Growth Factor Binding Protein 4/metabolism , Pregnancy-Associated Plasma Protein-A/metabolism , Adipose Tissue/cytology , Adipose Tissue/drug effects , Animals , Body Composition , Cattle , Cells, Cultured , Female , Gene Expression Regulation , Glycoproteins/genetics , Insulin-Like Growth Factor Binding Protein 4/genetics , Intercellular Signaling Peptides and Proteins , Intracellular Signaling Peptides and Proteins , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Pregnancy , Pregnancy-Associated Plasma Protein-A/genetics
2.
Growth Horm IGF Res ; 39: 45-53, 2018 04.
Article En | MEDLINE | ID: mdl-29279183

OBJECTIVE: White adipose tissue (WAT) fibrosis - the buildup of extracellular matrix (ECM) proteins, primarily collagen - is now a recognized hallmark of tissue dysfunction and is increased with obesity and lipodystrophy. While growth hormone (GH) is known to increase collagen in several tissues, no previous research has addressed its effect on ECM in WAT. Thus, the purpose of this study is to determine if GH influences WAT fibrosis. DESIGN: This study examined WAT from four distinct strains of GH-altered mice (bGH and GHA transgenic mice as well as two tissue specific GH receptor gene disrupted lines, fat growth hormone receptor knockout or FaGHRKO and liver growth hormone receptor knockout or LiGHRKO mice). Collagen content and adipocyte size were studied in all cohorts and compared to littermate controls. In addition, mRNA expression of fibrosis-associated genes was assessed in one cohort (6month old male bovine GH transgenic and WT mice) and cultured 3T3-L1 adipocytes treated with GH. RESULTS: Collagen stained area was increased in WAT from bGH mice, was depot-dependent, and increased with age. Furthermore, increased collagen content was associated with decreased adipocyte size in all depots but more dramatic changes in the subcutaneous fat pad. Notably, the increase in collagen was not associated with an increase in collagen gene expression or other genes known to promote fibrosis in WAT, but collagen gene expression was increased with acute GH administration in 3T3-LI cells. In contrast, evaluation of 6month old GH antagonist (GHA) male mice showed significantly decreased collagen in the subcutaneous depot. Lastly, to assess if GH induced collagen deposition directly or indirectly (via IGF-1), fat (Fa) and liver (Li) specific GHRKO mice were evaluated. Decreased fibrosis in FaGHRKO and increased fibrosis in LiGHRKO mice suggest GH is primarily responsible for the alterations in collagen. CONCLUSIONS: Our results show that GH action is positively associated with an increase in WAT collagen content as well as a decrease in adipocyte size, particularly in the subcutaneous depot. This effect appears to be due to GH and not IGF-1 and reveals a novel means by which GH regulates WAT accumulation.


Adipocytes/metabolism , Adipose Tissue, White/physiology , Fibrosis/pathology , Growth Hormone/administration & dosage , Subcutaneous Fat/metabolism , Adipocytes/cytology , Adipocytes/drug effects , Adipose Tissue, White/cytology , Adipose Tissue, White/drug effects , Animals , Cattle , Cells, Cultured , Female , Fibrosis/drug therapy , Fibrosis/metabolism , Insulin-Like Growth Factor I/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Subcutaneous Fat/cytology , Subcutaneous Fat/drug effects
3.
Endocrinology ; 158(5): 1406-1418, 2017 05 01.
Article En | MEDLINE | ID: mdl-28323915

Growth hormone (GH) is a determinant of glucose homeostasis and adipose tissue (AT) function. Using 7-month-old transgenic mice expressing the bovine growth hormone (bGH) gene and growth hormone receptor knockout (GHR-/-) mice, we examined whether changes in GH action affect glucose, insulin, and pyruvate tolerance and AT expression of proteins involved in the interrelated signaling pathways of GH, insulinlike growth factor 1 (IGF-1), and insulin. Furthermore, we searched for AT depot-specific differences in control mice. Glycated hemoglobin levels were reduced in bGH and GHR-/- mice, and bGH mice displayed impaired gluconeogenesis as judged by pyruvate tolerance testing. Serum IGF-1 was elevated by 90% in bGH mice, whereas IGF-1 and insulin were reduced by 97% and 61% in GHR-/- mice, respectively. Igf1 RNA was increased in subcutaneous, epididymal, retroperitoneal, and brown adipose tissue (BAT) depots in bGH mice (mean increase ± standard error of the mean in all five depots, 153% ± 27%) and decreased in all depots in GHR-/- mice (mean decrease, 62% ± 4%). IGF-1 receptor expression was decreased in all AT depots of bGH mice (mean decrease, 49% ± 6%) and increased in all AT depots of GHR-/- mice (mean increase, 94% ± 8%). Insulin receptor expression was reduced in retroperitoneal, mesenteric, and BAT depots in bGH mice (mean decrease in all depots, 56% ± 4%) and augmented in subcutaneous, retroperitoneal, mesenteric, and BAT depots in GHR-/- mice (mean increase: 51% ± 1%). Collectively, our findings indicate a role for GH in influencing hormone signaling in AT in a depot-dependent manner.


Adipose Tissue/drug effects , Adipose Tissue/metabolism , Growth Hormone/pharmacology , Insulin-Like Growth Factor I/genetics , Insulin/genetics , Receptors, Somatotropin/genetics , Animals , Cattle , Gene Expression Regulation/drug effects , Insulin/metabolism , Insulin-Like Growth Factor I/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Specificity/drug effects , Organ Specificity/genetics , Receptors, Somatotropin/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics
4.
Gerontology ; 62(2): 163-72, 2016.
Article En | MEDLINE | ID: mdl-26372907

BACKGROUND: Growth hormone (GH)-resistant/deficient mice experience improved glucose homeostasis and substantially increased lifespan. Recent evidence suggests that long-lived GH-resistant/deficient mice are protected from white adipose tissue (WAT) dysfunction, including WAT cellular senescence, impaired adipogenesis and loss of subcutaneous WAT in old age. This preservation of WAT function has been suggested to be a potential mechanism for the extended lifespan of these mice. OBJECTIVE: The objective of this study was to examine WAT senescence, WAT distribution and glucose homeostasis in dwarf GH receptor antagonist (GHA) transgenic mice, a unique mouse strain having decreased GH action but normal longevity. METHODS: 18-month-old female GHA mice and wild-type (WT) littermate controls were used. Prior to dissection, body composition, fasting blood glucose as well as glucose and insulin tolerance tests were performed. WAT distribution was determined by weighing four distinct WAT depots at the time of dissection. Cellular senescence in four WAT depots was assessed using senescence-associated ß-galactosidase staining to quantify the senescent cell burden, and real-time qPCR to quantify gene expression of senescence markers p16 and IL-6. RESULTS: GHA mice had a 22% reduction in total body weight, a 33% reduction in lean mass and a 10% increase in body fat percentage compared to WT controls. GHA mice had normal fasting blood glucose and improved insulin sensitivity; however, they exhibited impaired glucose tolerance. Moreover, GHA mice displayed enhanced lipid storage in the inguinal subcutaneous WAT depot (p < 0.05) and a 1.7-fold increase in extra-/intraperitoneal WAT ratio compared to controls (p < 0.05). Measurements of WAT cellular senescence showed no difference between GHA mice and WT controls. CONCLUSIONS: Similar to other mice with decreased GH action, female GHA mice display reduced age-related lipid redistribution and improved insulin sensitivity, but no change in cellular senescence. The similar abundance of WAT senescent cells in GHA and control mice suggests that any protection against generation of senescent cells afforded by decreased GH action, low insulin-like growth factor 1 and/or improved insulin sensitivity in the GHA mice may be offset by their severe adiposity, since obesity is known to increase senescence.


Adipocytes, White , Blood Glucose/metabolism , Cellular Senescence/genetics , Receptors, Somatotropin/genetics , Subcutaneous Fat , Adipogenesis/genetics , Animals , Female , Glucose Intolerance/metabolism , Homeostasis/genetics , Insulin Resistance , Insulin-Like Growth Factor I/metabolism , Laron Syndrome , Mice , Mice, Transgenic , beta-Galactosidase/metabolism
5.
Aging (Albany NY) ; 7(7): 500-12, 2015 Jul.
Article En | MEDLINE | ID: mdl-26233957

Global disruption of the GH receptor in mice (GHR-/-) produces a large and reproducible extension in lifespan. Since lack of GH action in muscle resulting in improved glucose homeostasis is potentially a mechanism by which GHR-/- mice are long-lived, and since no information on muscle-specific GHR disruption in females is available, we generated and characterized a line of muscle-specific GHR disrupted (MuGHRKO) mice. As expected, male MuGHRKO mice had improved fasting blood glucose, insulin, c-peptide, and glucose tolerance. In contrast, female MuGHRKO mice exhibited normal glucose, insulin, and glucose tolerance. Body weight was mildly but significantly altered in opposite directions in males (decreased) and females (increased) compared to controls. Grip strength and treadmill endurance were unchanged with advanced age in both sexes, suggesting that the direct action of GH on muscle has minimal effect on age-related musculoskeletal frailty. Longevity was unchanged in both sexes at Ohio University and significantly increased for males at University of Michigan. These data suggest that removal of GHR in muscle of male MuGHRKO mice replicates some of the health benefits seen in global GHR-/- mice including improvements to glucose homeostasis and smaller body weight in males, which may explain the trends observed in lifespan.


Carrier Proteins/genetics , Longevity/genetics , Longevity/physiology , Muscle, Skeletal/physiology , Animals , Blood Glucose/metabolism , Body Composition/genetics , Body Weight , C-Peptide/metabolism , Energy Metabolism , Female , Glucose Intolerance/genetics , Health Status , Insulin/blood , Male , Mice , Mice, Knockout , Muscle Strength/genetics , Physical Endurance/genetics , Sex Characteristics
...