Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Anal Chem ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150274

RESUMEN

Understanding and controlling peptide aggregation are critical due to its neurotoxic implications. However, structural information about the key intermediates, the oligomers, is obscured by a cascade of coinciding events occurring at various time and energy scales, which results in complex and heterogeneous mixtures of oligomers. To address this challenge, we have developed the Photo-Synapt, a novel, multidimensional spectrometer that integrates ion mobility mass spectrometry with infrared (IR) action spectroscopy within a single experiment. By combining three different orthogonal analytical dimensions, we can select and isolate individual oligomers by mass, charge, size, and shape and provide a unique molecular fingerprint for each oligomer. The broad application of this technology is demonstrated by its application to oligosaccharide analysis from glycoproteins, which are challenging to analyze due to the minute differences between isomers. By integration of IR action spectroscopy with ion mobility mass spectrometry, this approach adds an analytical dimension that effectively addresses this limitation, offering a unique molecular fingerprint for each isomer.

2.
Sci Rep ; 14(1): 8508, 2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38605095

RESUMEN

Leukemias are genetically heterogeneous and diagnostics therefore includes various standard-of-care (SOC) techniques, including karyotyping, SNP-array and FISH. Optical genome mapping (OGM) may replace these as it detects different types of structural aberrations simultaneously and additionally detects much smaller aberrations (500 bp vs 5-10 Mb with karyotyping). However, its resolution may still be too low to define clinical relevance of aberrations when they are located between two OGM labels or when labels are not distinct enough. Here, we test the potential of Cas9-directed long-read sequencing (LRS) as an additional technique to resolve such potentially relevant new findings. From an internal Bionano implementation study we selected ten OGM calls that could not be validated with SOC methods. Per variant we designed crRNAs for Cas9 enrichment, prepared libraries and sequenced them on a MinION/GridION device. We could confirm all aberrations and, importantly, the actual breakpoints of the OGM calls were located between 0.2 and 5.5 kb of the OGM-estimated breakpoints, confirming the high reliability of OGM. Furthermore, we show examples of redefinition of aberrations between labels that enable judgment of clinical relevance. Our results suggest that Cas9-directed LRS can be a relevant and flexible secondary technique in diagnostic workflows including OGM.


Asunto(s)
Sistemas CRISPR-Cas , Leucemia , Humanos , Reproducibilidad de los Resultados , Cariotipificación , Mapeo Cromosómico
3.
Artículo en Inglés | MEDLINE | ID: mdl-38465480

RESUMEN

BACKGROUND: Genome diagnostics is considered gold standard diagnostics for epidermolysis bullosa (EB), a phenotypically and genetically heterogeneous group of rare disorders characterized by blistering and wounding of mucocutaneous tissues. EB is caused by pathogenic variants in genes encoding proteins of the dermo-epidermal junction. Accurate genetic diagnosis of EB is crucial for prognostication, counselling and precision-medicine. Genome diagnostics for EB started in 1991 with the introduction of Sanger sequencing (SS), analysing one gene at a time. In 2013, SS was superseded by next-generation sequencing (NGS), that allow for high-throughput sequencing of multiple genes in parallel. Several studies have shown a beneficial role for NGS in EB diagnostics, but its true benefit has not been quantified. OBJECTIVES: To determine the benefit of NGS in EB by systematically evaluating the performance of different genome diagnostics used over time based on robust data from the Dutch EB Registry. METHODS: The diagnostic performances of SS and NGS were systematically evaluated in a retrospective observational study including all index cases with a clinical diagnosis of EB in whom genome diagnostics was performed between 01 January 1994 and 01 January 2022 (n = 308), registered at the Dutch EB Expertise Centre. RESULTS: Over time, a genetic diagnosis was made in 289/308 (94%) EB cases. The diagnostic yield increased from 89% (SS) to 95% (NGS). Most importantly, NGS significantly reduced diagnostic turnaround time (39 days vs. 211 days, p < 0.001). The likelihood of detecting variants of uncertain significance and additional findings increased from 5% and 1% (SS) to 22% and 13% (NGS) respectively. CONCLUSIONS: Our study quantifies the benefit of NGS-based methods and demonstrate they have had a major impact on EB diagnostics through an increased diagnostic yield and a dramatically decreased turnaround time (39 days). Although our diagnostic yield is high (95%), further improvement of genome diagnostics is urgently needed to provide a genetic diagnosis in all EB patients.

4.
Sci Adv ; 9(48): eadj2801, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38039360

RESUMEN

The analysis of proteins in the gas phase benefits from detectors that exhibit high efficiency and precise spatial resolution. Although modern secondary electron multipliers already address numerous analytical requirements, additional methods are desired for macromolecules at energies lower than currently used in post-acceleration detection. Previous studies have proven the sensitivity of superconducting detectors to high-energy particles in time-of-flight mass spectrometry. Here, we demonstrate that superconducting nanowire detectors are exceptionally well suited for quadrupole mass spectrometry and exhibit an outstanding quantum yield at low-impact energies. At energies as low as 100 eV, the sensitivity of these detectors surpasses conventional ion detectors by three orders of magnitude, and they offer the possibility to discriminate molecules by their impact energy and charge. We demonstrate three developments with these compact and sensitive devices, the recording of 2D ion beam profiles, photochemistry experiments in the gas phase, and advanced cryogenic electronics to pave the way toward highly integrated detectors.

5.
JACS Au ; 3(10): 2790-2799, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37885583

RESUMEN

The isolation of biomolecules in a high vacuum enables experiments on fragile species in the absence of a perturbing environment. Since many molecular properties are influenced by local electric fields, here we seek to gain control over the number of charges on a biopolymer by photochemical uncaging. We present the design, modeling, and synthesis of photoactive molecular tags, their labeling to peptides and proteins as well as their photochemical validation in solution and in the gas phase. The tailored tags can be selectively cleaved off at a well-defined time and without the need for any external charge-transferring agents. The energy of a single or two green photons can already trigger the process, and it is soft enough to ensure the integrity of the released biomolecular cargo. We exploit differences in the cleavage pathways in solution and in vacuum and observe a surprising robustness in upscaling the approach from a model system to genuine proteins. The interaction wavelength of 532 nm is compatible with various biomolecular entities, such as oligonucleotides or oligosaccharides.

6.
Toxicol Lett ; 383: 75-88, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37353095

RESUMEN

Bioactivation of trichloroethylene (TCE) via glutathione conjugation is associated with several adverse effects in the kidney and other extrahepatic tissues. Of the three regioisomeric conjugates formed, S-(1,2-trans-dichlorovinyl)-glutathione (1,2-trans-DCVG), S-(1,2-cis-dichlorovinyl)-glutathione and S-(2,2-dichlorovinyl)-glutathione, only 1,2-trans-DCVG and its corresponding cysteine-conjugate, 1,2-trans-DCVC, have been subject to extensive mechanistic studies. In the present study, the metabolism and cellular effects of 1,2-cis-DCVG, the major regioisomer formed by rat liver fractions, and 1,2-cis-DCVC were investigated for the first time using RPTEC/TERT1-cells as in vitro renal model. In contrast to 1,2-trans-DCVG/C, the cis-regioisomers showed minimal effects on cell viability and mitochondrial respiration. Transcriptomics analysis showed that both 1,2-cis-DCVC and 1,2-trans-DCVC caused Nrf2-mediated antioxidant responses, with 3 µM as lowest effective concentration. An ATF4-mediated integrated stress response and p53-mediated responses were observed starting from 30 µM for 1,2-trans-DCVC and 125 µM for 1,2-cis-DCVC. Comparison of the metabolism of the DCVG regioisomers by LC/MS showed comparable rates of processing to their corresponding DCVC. No detectable N-acetylation was observed in RPTEC/TERT1 cells. Instead, N-glutamylation of DCVC to form N-γ-glutamyl-S-(dichlorovinyl)-L-cysteine was identified as a novel route of metabolism. The results suggest that 1,2-cis-DCVC may be of less toxicological concern for humans than 1,2-trans-DCVC, considering its lower intrinsic toxicity and lower rate of formation by human liver fractions.


Asunto(s)
Cisteína , Tricloroetileno , Ratas , Animales , Humanos , Cisteína/toxicidad , Cisteína/metabolismo , Riñón/metabolismo , Glutatión/metabolismo , Tricloroetileno/toxicidad
7.
Anal Bioanal Chem ; 415(18): 4209-4220, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37014373

RESUMEN

MS SPIDOC is a novel sample delivery system designed for single (isolated) particle imaging at X-ray Free-Electron Lasers that is adaptable towards most large-scale facility beamlines. Biological samples can range from small proteins to MDa particles. Following nano-electrospray ionization, ionic samples can be m/z-filtered and structurally separated before being oriented at the interaction zone. Here, we present the simulation package developed alongside this prototype. The first part describes how the front-to-end ion trajectory simulations have been conducted. Highlighted is a quadrant lens; a simple but efficient device that steers the ion beam within the vicinity of the strong DC orientation field in the interaction zone to ensure spatial overlap with the X-rays. The second part focuses on protein orientation and discusses its potential with respect to diffractive imaging methods. Last, coherent diffractive imaging of prototypical T = 1 and T = 3 norovirus capsids is shown. We use realistic experimental parameters from the SPB/SFX instrument at the European XFEL to demonstrate that low-resolution diffractive imaging data (q < 0.3 nm-1) can be collected with only a few X-ray pulses. Such low-resolution data are sufficient to distinguish between both symmetries of the capsids, allowing to probe low abundant species in a beam if MS SPIDOC is used as sample delivery.


Asunto(s)
Cápside , Electrones , Simulación por Computador , Sincrotrones , Rayos X
8.
Arch Toxicol ; 97(2): 523-545, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36576512

RESUMEN

Environmental or occupational exposure of humans to trichloroethylene (TCE) has been associated with different extrahepatic toxic effects, including nephrotoxicity and neurotoxicity. Bioactivation of TCE via the glutathione (GSH) conjugation pathway has been proposed as underlying mechanism, although only few mechanistic studies have used cell models of human origin. In this study, six human derived cell models were evaluated as in vitro models representing potential target tissues of TCE-conjugates: RPTEC/TERT1 (kidney), HepaRG (liver), HUVEC/TERT2 (vascular endothelial), LUHMES (neuronal, dopaminergic), human induced pluripotent stem cells (hiPSC) derived peripheral neurons (UKN5) and hiPSC-derived differentiated brain cortical cultures containing all subtypes of neurons and astrocytes (BCC42). A high throughput transcriptomic screening, utilizing mRNA templated oligo-sequencing (TempO-Seq), was used to study transcriptomic effects after exposure to TCE-conjugates. Cells were exposed to a wide range of concentrations of S-(1,2-trans-dichlorovinyl)glutathione (1,2-DCVG), S-(1,2-trans-dichlorovinyl)-L-cysteine (1,2-DCVC), S-(2,2-dichlorovinyl)glutathione (2,2-DCVG), and S-(2,2-dichlorovinyl)-L-cysteine (2,2-DCVC). 1,2-DCVC caused stress responses belonging to the Nrf2 pathway and Unfolded protein response in all the tested models but to different extents. The renal model was the most sensitive model to both 1,2-DCVC and 1,2-DCVG, with an early Nrf2-response at 3 µM and hundreds of differentially expressed genes at higher concentrations. Exposure to 2,2-DCVG and 2,2-DCVC also resulted in the upregulation of Nrf2 pathway genes in RPTEC/TERT1 although at higher concentrations. Of the three neuronal models, both the LUHMES and BCC42 showed significant Nrf2-responses and at higher concentration UPR-responses, supporting recent hypotheses that 1,2-DCVC may be involved in neurotoxic effects of TCE. The cell models with the highest expression of γ-glutamyltransferase (GGT) enzymes, showed cellular responses to both 1,2-DCVG and 1,2-DCVC. Little to no effects were found in the neuronal models from 1,2-DCVG exposure due to their low GGT-expression. This study expands our knowledge on tissue specificity of TCE S-conjugates and emphasizes the value of human cell models together with transcriptomics for such mechanistic studies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Tricloroetileno , Humanos , Cisteína/toxicidad , Cisteína/metabolismo , Tricloroetileno/toxicidad , Tricloroetileno/metabolismo , Transcriptoma , Factor 2 Relacionado con NF-E2/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Glutatión/metabolismo , Fenotipo
9.
Anal Chem ; 93(48): 16068-16075, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34813704

RESUMEN

Native top-down mass spectrometry (MS) is gaining traction for the analysis and sequencing of intact proteins and protein assemblies, giving access to their mass and composition, as well as sequence information useful for identification. Herein, we extend and apply native top-down MS, using electron capture dissociation, to two submillion Da IgM- and IgG-based oligomeric immunoglobulins. Despite structural similarities, these two systems are quite different. The ∼895 kDa noncovalent IgG hexamer consists of six IgG subunits hexamerizing in solution due to three specifically engineered mutations in the Fc region, whereas the ∼935 kDa IgM oligomer results from the covalent assembly of one joining (J) chain and 5 IgM subunits into an asymmetric "pentamer" stabilized by interchain disulfide bridges. Notwithstanding their size, structural differences, and complexity, we observe that their top-down electron capture dissociation spectra are quite similar and straightforward to interpret, specifically providing informative sequence tags covering the highly variable CDR3s and FR4s of the Ig subunits they contain. Moreover, we show that the electron capture dissociation fragmentation spectra of immunoglobulin oligomers are essentially identical to those obtained for their respective monomers. Demonstrated for recombinantly produced systems, the approach described here opens up new prospects for the characterization and identification of IgMs circulating in plasma, which is important since IgMs play a critical role in the early immune response to pathogens such as viruses and bacteria.


Asunto(s)
Regiones Determinantes de Complementariedad , Electrones , Espectrometría de Masas , Proteínas
10.
J Mass Spectrom ; 56(11): e4786, 2021 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-34608711

RESUMEN

Virus-like particles (VLPs) are proteinaceous shells derived from viruses lacking any viral genomic material. Adeno-associated virus (AAV) is a non-enveloped icosahedral virus used as VLP delivery system in gene therapy (GT). Its success as vehicle for GT is due to its selective tropism, high level of transduction, and low immunogenicity. In this study, two preparations of AAV serotype 8 (AAV8) VLPs either carrying or lacking completely genomic cargo (i.e., non-viral ssDNA) have been investigated by means of a native nano-electrospray gas-phase electrophoretic mobility molecular analyzer (GEMMA) (native nES GEMMA) and native nano-electrospray ionization quadrupole reflectron time-of-flight mass spectrometry (MS) (native nESI QRTOF MS). nES GEMMA is based on electrophoretic mobility principles: single-charge nanoparticles (NPs), that is, AAV8 particle, are separated in a laminar sheath flow of dry, particle-free air and a tunable orthogonal electric field. Thus, the electrophoretic mobility diameter (EMD) of a bio-NP (i.e., diameter of globular nano-objects) is obtained at atmospheric pressure, which can be converted into its MW based on a correlation. First is the native nESI QRTOF. MS's goal is to keep the native biological conformation of an analyte during the passage into the vacuum. Subsequently, highly accurate MW values are obtained from multiple-charged species after deconvolution. However, once applied to the analysis of megadalton species, native MS is challenging and requires customized instrumental modifications not readily available on standard devices. Hence, the analysis of AAV8 VLPs via native MS in our hands did not produce a defined charge state assignment, that is, charge deconvolution for exact MW determination was not possible. Nonetheless, the method we present is capable to estimate the MW of VLPs by combining the results from native nES GEMMA and native ESI QRTOF MS. In detail, our findings show a MW of 3.7 and 5.0 MDa for AAV8 VLPs either lacking or carrying an engineered genome, respectively.

12.
Toxicol Lett ; 341: 94-106, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33539969

RESUMEN

Enzymatic conjugation of glutathione (GSH) to trichloroethylene (TCE) followed by catabolism to the corresponding cysteine-conjugate, S-(dichlorovinyl)-L-cysteine (DCVC), and subsequent bioactivation by renal cysteine conjugate beta-lyases is considered to play an important role in the nephrotoxic effects observed in TCE-exposed rat and human. In this study, it is shown for the first time that three regioisomers of GSH-conjugates of TCE are formed by rat and human liver fractions, namely S-(1,2-trans-dichlorovinyl)-glutathione (1,2-trans-DCVG), S-(1,2-cis-dichlorovinyl)-glutathione (1,2-cis-DCVG) and S-(2,2-dichlorovinyl)-glutathione (2,2-DCVG). In incubations of TCE with rat liver fractions their amounts decreased in order of 1,2-cis-DCVG > 1,2-trans-DCVG > 2,2-DCVG. Human liver cytosol showed a more than 10-fold lower activity of GSH-conjugation, with amounts of regioisomers decreasing in order 2,2-DCVG > 1,2-trans-DCVG > 1,2-cis-DCVG. Incubations with recombinant human GSTs suggest that GSTA1-1 and GSTA2-2 play the most important role in human liver cytosol. GSTP1-1, which produces regioisomers in order 1,2-trans-DCVG > 2,2-cis-DCVG > 1,2-cis-DCVG, is likely to contribute to extrahepatic GSH-conjugation of TCE. Analysis of the products formed by a beta-lyase mimetic model showed that both 1,2-trans-DCVC and 1,2-cis-DCVC are converted to reactive products that form cross-links between the model nucleophile 4-(4-nitrobenzyl)-pyridine (NBP) and thiol-species. No NBP-alkylation was observed with 2,2-DCVC corresponding to its low cytotoxicity and mutagenicity. The lower activity of GSH-conjugation of TCE by human liver fractions, in combination with the lower fraction of potential nephrotoxic and mutagenic 1,2-DCVG-isomers, suggest that humans are at much lower risk for TCE-associated nephrotoxic effects than rats.


Asunto(s)
Glutatión Transferasa/metabolismo , Glutatión/análogos & derivados , Glutatión/metabolismo , Tricloroetileno/farmacología , Animales , Cromatografía Liquida , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glutatión Transferasa/genética , Humanos , Hígado , Masculino , Estructura Molecular , Ratas , Ratas Wistar , Proteínas Recombinantes , Solventes/farmacología , Especificidad de la Especie
13.
Biochem Pharmacol ; 177: 113938, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32224137

RESUMEN

Tuberculosis (TB) is a globally significant infective disease that is caused by a single infectious agent, Mycobacterium tuberculosis (Mtb). Because of the rise in the number of multidrug-resistant (MDR) TB strains, identification of alternative drug targets for the development of drugs with different mechanism of actions is desired. CYP121A1, one of the twenty cytochrome P450 enzymes encoded in the Mtb genome, was previously shown to be essential for bacterial growth. This enzyme catalyzes the intramolecular C-C crosslinking reaction of the cyclopeptide cyclo(L-tyr-L-tyr) (cYY) yielding the metabolite mycocyclosin. In the present study, acetylene-substituted cYY-analogs were synthesized and evaluated as potential mechanism-based inhibitors of CYP121A1. The acetylene-substituted cYY-analogs were capable of binding to CYP121A1 with affinities comparable with cYY, and exhibited a Type I binding mode, indicative of a substrate-like binding, mandatory for metabolism. Only the cYY-analogs which contain an acetylene-substitution at one (2a) or both (3) para-positions of cYY showed mechanism-based inhibition of CYP121A1 activity. The values of KI and kinact were 236 µM and 0.045 min-1, respectively, for compound 2a, and 145 µM and 0.015 min-1, repectively, for compound 3 The inactivation could neither be reversed by dialysis nor be prevented by including glutathione. LC-MS analysis demonstrated that the inactivation results from covalent binding to the apoprotein, whereas the heme was unmodified. Interestingly, the mass increment of the CYP121A1 apoprotein was significantly smaller than was expected from the ketene formed by oxidation of the acetylene-group, indicative for a secondary cleavage reaction in the active site of CYP121A1. Although the two acetylene-containing cYY-analogs showed significant mechanism-based inhibition, growth inhibition of the Mtb strains was only observed at millimolar concentrations. This low efficacy may be due to insufficient irreversible inactivation of CYP121A1 and/or insufficient cellular uptake. Although the identified mechanism-based inhibitors have no perspective for Mtb-treatment, this study is the first proof-of-principle that mechanism-based inhibition of CYP121A1 is feasible and may provide the basis for new strategies in the design and development of compounds against this promising therapeutic target.


Asunto(s)
Acetileno/química , Antituberculosos/farmacología , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Diseño de Fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Péptidos Cíclicos/química , Tirosina/análogos & derivados , Antituberculosos/química , Antituberculosos/metabolismo , Dominio Catalítico , Ciclización , Inhibidores Enzimáticos del Citocromo P-450/química , Inhibidores Enzimáticos del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/química , Dicetopiperazinas/metabolismo , Dipéptidos/química , Escherichia coli/genética , Escherichia coli/metabolismo , Pruebas de Sensibilidad Microbiana , Oxidación-Reducción , Especificidad por Sustrato , Tuberculosis/metabolismo , Tuberculosis/microbiología
14.
Chembiochem ; 21(10): 1461-1472, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31919943

RESUMEN

The regio- (and stereo-)selectivity and specific activity of cytochrome P450s are determined by the accessibility of potential sites of metabolism (SOMs) of the bound substrate relative to the heme, and the activation barrier of the regioselective oxidation reaction(s). The accessibility of potential SOMs depends on the relative binding free energy (ΔΔGbind ) of the catalytically active substrate-binding poses, and the probability of the substrate to adopt a transition-state geometry. An established experimental method to measure activation energies of enzymatic reactions is the analysis of reaction rate constants at different temperatures and the construction of Arrhenius plots. This is a challenge for multistep P450-catalyzed processes that involve redox partners. We introduce a modified Arrhenius approach to overcome the limitations in studying P450 selectivity, which can be applied in multiproduct enzyme catalysis. Our approach gives combined information on relative activation energies, ΔΔGbind values, and collision entropies, yielding direct insight into the basis of selectivity in substrate conversion.


Asunto(s)
Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo , Hemo/metabolismo , Ácido Mefenámico/metabolismo , Sitios de Unión , Catálisis , Hidroxilación , Simulación de Dinámica Molecular , Oxidación-Reducción , Unión Proteica , Especificidad por Sustrato , Termodinámica
15.
SLAS Discov ; 24(7): 745-754, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31208248

RESUMEN

Several cytochrome P450 enzymes (CYPs) encoded in the genome of Mycobacterium tuberculosis (Mtb) are considered potential new drug targets due to the essential roles they play in bacterial viability and in the establishment of chronic intracellular infection. Identification of inhibitors of Mtb CYPs at present is conducted by ultraviolet-visible (UV-vis) optical titration experiments or by metabolism studies using endogenous substrates, such as cholesterol and lanosterol. The first technique requires high enzyme concentrations and volumes, while analysis of steroid hydroxylation is dependent on low-throughput analytical methods. Luciferin-based luminogenic substrates have proven to be very sensitive substrates for the high-throughput profiling of inhibitors of human CYPs. In the present study, 17 pro-luciferins were evaluated as substrates for Mtb CYP121A1, CYP124A1, CYP125A1, CYP130A1, and CYP142A1. Luciferin-BE was identified as an excellent probe substrate for CYP130A1, resulting in a high luminescence yield after addition of luciferase and adenosine triphosphate (ATP). Its applicability for high-throughput screening was supported by a high Z'-factor and high signal-to-background ratio. Using this substrate, the inhibitory properties of a selection of known inhibitors could be characterized using significantly less protein concentration when compared to UV-vis optical titration experiments. Although several luminogenic substrates were also identified for CYP121A1, CYP124A1, CYP125A1, and CYP142A1, their relatively low yield of luminescence and low signal-to-background ratios make them less suitable for high-throughput screening since high enzyme concentrations will be needed. Further structural optimization of luminogenic substrates will be necessary to obtain more sensitive probe substrates for these Mtb CYPs.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Pruebas de Enzimas , Mediciones Luminiscentes/métodos , Mycobacterium tuberculosis/enzimología , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/aislamiento & purificación , Activación Enzimática , Pruebas de Enzimas/métodos , Ensayos Analíticos de Alto Rendimiento , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Mycobacterium tuberculosis/genética , Oxidación-Reducción , Reproducibilidad de los Resultados , Especificidad por Sustrato
16.
PLoS One ; 14(5): e0217292, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31125381

RESUMEN

The bacterial Cytochrome P450 (CYP) BM3 (CYP102A1) is one of the most active CYP isoforms. BM3 mutants can serve as a model for human drug-metabolizing CYPs and/or as biocatalyst for selective formation of drug metabolites. Hence, molecular and computational biologists have in the last two decades shown strong interest in the discovery and design of novel BM3 variants with optimized activity and selectivity for substrate conversion. This led e.g. to the discovery of mutant M11 that is able to metabolize a variety of drugs and drug-like compounds with relatively high activity. In order to further improve our understanding of CYP binding and reactions, we performed a co-crystallization study of mutant M11 and report here the three-dimensional structure M11 in complex with dithiothreitol (DTT) at a resolution of 2.16 Å. The structure shows that DTT can coordinate to the Fe atom in the heme group. UV/Vis spectroscopy and molecular dynamics simulation studies underline this finding and as first structure of the CYP BM3 mutant M11 in complex with a ligand, it offers a basis for structure-based design of novel mutants.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , Ditiotreitol/química , NADPH-Ferrihemoproteína Reductasa/química , NADPH-Ferrihemoproteína Reductasa/genética , Sustitución de Aminoácidos , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Sistema Enzimático del Citocromo P-450/metabolismo , Ditiotreitol/metabolismo , Diseño de Fármacos , Hemo/química , Humanos , Ligandos , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Mutación , NADPH-Ferrihemoproteína Reductasa/metabolismo , Preparaciones Farmacéuticas/metabolismo , Conformación Proteica , Dominios Proteicos , Ingeniería de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
17.
Appl Microbiol Biotechnol ; 103(9): 3597-3614, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30810776

RESUMEN

This review covers the current knowledge of the cytochrome P450 enzymes (CYPs) of the human pathogen Mycobacterium tuberculosis (Mtb) and their endogenous redox partners, focusing on their biological function, expression, regulation, involvement in antibiotic resistance, and suitability for exploitation as antitubercular targets. The Mtb genome encodes twenty  CYPs and nine associated redox partners required for CYP catalytic activity. Transposon insertion mutagenesis studies have established the (conditional) essentiality of several of these enzymes for in vitro growth and host infection. Biochemical characterization of a handful of Mtb CYPs has revealed that they have specific physiological functions in bacterial virulence and persistence in the host. Analysis of the transcriptional response of Mtb CYPs and redox partners to external insults and to first-line antibiotics used to treat tuberculosis showed a diverse expression landscape, suggesting for some enzymes a potential role in drug resistance. Combining the knowledge about the physiological roles and expression profiles indicates that, at least five Mtb CYPs, CYP121A1, CYP125A1, CYP139A1, CYP142A1, and CYP143A1, as well as two ferredoxins, FdxA and FdxC, can be considered promising novel therapeutic targets.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Mycobacterium tuberculosis/enzimología , Animales , Antituberculosos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , Humanos , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Oxidación-Reducción , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
18.
Br J Pharmacol ; 176(3): 466-477, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30447161

RESUMEN

BACKGROUND AND PURPOSE: The aim of this study was to characterize the human cytochrome P450s (CYPs) involved in oxidative bioactivation of flucloxacillin to 5-hydroxymethyl flucloxacillin, a metabolite with high cytotoxicity towards biliary epithelial cells. EXPERIMENTAL APPROACH: The CYPs involved in hydroxylation of flucloxacillin were characterized using recombinant human CYPs, pooled liver microsomes in the presence of CYP-specific inhibitors and by correlation analysis using a panel of liver microsomes from 16 donors. KEY RESULTS: Recombinant CYPs showing the highest specific activity were CYP3A4, CYP3A7 and to lower extent CYP2C9 and CTP2C8. Michaelis-Menten enzyme kinetics were determined for pooled human liver microsomes, recombinant CYP3A4, CYP3A7 and CYP2C9. Surprisingly, sulfaphenazole appeared to be a potent inhibitor of 5'-hydroxylation of flucloxacillin by both recombinant CYP3A4 and CYP3A7. CONCLUSIONS AND IMPLICATIONS: The combined results show that the 5'-hydroxylation of flucloxacillin is primarily catalysed by CYP3A4, CYP3A7 and CYP2C9. The large variability of the hepatic expression of these enzymes could affect the formation of 5'-hydroxymethyl flucloxacillin, which may determine the differences in susceptibility to flucloxacillin-induced liver injury. Additionally, the strong inhibition in CYP3A-catalysed flucloxacillin metabolism by sulfaphenazole suggests that unanticipated drug-drug interactions could occur with coadministered drugs.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Floxacilina/metabolismo , Sulfafenazol/farmacología , Biocatálisis/efectos de los fármacos , Floxacilina/química , Humanos , Hidroxilación/efectos de los fármacos , Cinética , Estructura Molecular , Sulfafenazol/química
19.
Appl Microbiol Biotechnol ; 102(21): 9231-9242, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30136203

RESUMEN

Mycobacterium tuberculosis (Mtb) codes for 20 cytochrome P450 enzymes (CYPs), considered potential drug-targets due to their essential roles in bacterial viability and host infection. Catalytic activity of mycobacterial CYPs is dependent on electron transfer from a NAD (P)H-ferredoxin-reductase (FNR) and a ferredoxin (Fd). Two FNRs (FdrA and FprA) and five ferredoxins (Fdx, FdxA, FdxC, FdxD, and Rv1786) have been found in the Mtb genome. However, as of yet, the cognate redox partnerships have not been fully established. This is confounded by the fact that heterologous redox partners are routinely used to reconstitute Mtb CYP metabolism. To this end, this study aimed to biochemically characterize and identify cognate redox partnerships for Mtb CYPs. Interestingly, all combinations of FNRs and ferredoxins were active in the reduction of oxidized cytochrome c, but steady-state kinetic assays revealed FdxD as the most efficient redox partner for FdrA, whereas Fdx coupled preferably with FprA. CYP121A1, CYP124A1, CYP125A1, and CYP142A1 metabolism with the cognate redox partners was reconstituted in vitro showing an unanticipated selectivity in the requirement for electron transfer partnership, which did not necessarily correlate with proximity in the genome. This is the first description of microbial P450 metabolism in which multiple ferredoxins are functionally linked to multiple CYPs.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Ferredoxinas/metabolismo , Mycobacterium tuberculosis/metabolismo , Secuencia de Aminoácidos , Transporte de Electrón/fisiología , Cinética , Oxidación-Reducción , Oxidorreductasas/metabolismo , Alineación de Secuencia
20.
Front Pharmacol ; 9: 388, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29720942

RESUMEN

Formation of the reactive amodiaquine quinoneimine (AQ-QI) and N-desethylamodiaquine quinoneimine (DEAQ-QI) plays an important role in the toxicity of the anti-malaria drug amodiaquine (AQ). Glutathione conjugation protects against AQ-induced toxicity and GSTP1 is able to conjugate its quinoneimine metabolites AQ-QI and DEA-QI with glutathione. In this study, HepG2 cells transiently transfected with the human GSTP1 construct were utilized to investigate the protective effect of GSTP1 in a cellular context. HepG2 cells were exposed to synthesized QIs, which bypasses the need for intracellular bioactivation of AQ or DEAQ. Exposure was accompanied by decreased cell viability, increased caspase 3 activity, and decreased intracellular GSH levels. Using high-content imaging-based BAC-GFP reporters, it was shown that AQ-QI and DEAQ-QI specifically activated the endoplasmic reticulum (ER) stress response. In contrast, oxidative stress, DNA damage, or inflammatory stress responses were not activated. Overexpression of GSTP1 resulted in a two-fold increase in GSH-conjugation of the QIs, attenuated QI-induced cytotoxicity especially under GSH-depletion condition, abolished QIs-induced apoptosis but did not significantly inhibit the activation of the ER stress response. In conclusion, these results indicate a protective role of GSTP1 by increasing enzymatic detoxification of AQ-QI and DEAQ-QI and suggest a second protective mechanism by interfering with ER stress induced apoptosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA