Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39184078

RESUMEN

Tumor initiation and progression rely on intricate cellular pathways that promote proliferation while suppressing differentiation, yet the importance of pathways inhibiting differentiation in cancer remains incompletely understood. Here, we reveal a novel mechanism centered on the repression of the neuronal-specific transcription factor ARNT2 by the MYC oncogene that governs the balance between proliferation and differentiation. We found that MYC coordinates the transcriptional repression of ARNT2 through the activity of polycomb repressive complex 2 (PRC2). Notably, ARNT2, highly and specifically expressed in the central nervous system, is diminished in glioblastoma, inversely correlating with patient survival. Utilizing in vitro and in vivo models, we demonstrate that ARNT2 knockout (KO) exerts no discernible effect on the in vitro proliferation of glioblastoma cells, but significantly enhances the growth of glioblastoma cells in vivo. Conversely, ARNT2 overexpression severely dampens the growth of fully transformed glioblastoma cells subcutaneously or orthotopically xenografted in mice. Mechanistically, ARNT2 depletion diminishes differentiation and enhances stemness of glioblastoma cells. Our findings provide new insights into the complex mechanisms used by oncogenes to limit differentiation in cancer cells and define ARNT2 as a tumor suppressor in glioblastoma.

2.
Nat Commun ; 15(1): 4266, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769298

RESUMEN

Cancer cells exhibit distinct metabolic activities and nutritional dependencies compared to normal cells. Thus, characterization of nutrient demands by individual tumor types may identify specific vulnerabilities that can be manipulated to target the destruction of cancer cells. We find that MYC-driven liver tumors rely on augmented tryptophan (Trp) uptake, yet Trp utilization to generate metabolites in the kynurenine (Kyn) pathway is reduced. Depriving MYC-driven tumors of Trp through a No-Trp diet not only prevents tumor growth but also restores the transcriptional profile of normal liver cells. Despite Trp starvation, protein synthesis remains unhindered in liver cancer cells. We define a crucial role for the Trp-derived metabolite indole 3-pyruvate (I3P) in liver tumor growth. I3P supplementation effectively restores the growth of liver cancer cells starved of Trp. These findings suggest that I3P is a potential therapeutic target in MYC-driven cancers. Developing methods to target this metabolite represents a potential avenue for liver cancer treatment.


Asunto(s)
Carcinogénesis , Indoles , Neoplasias Hepáticas , Proteínas Proto-Oncogénicas c-myc , Triptófano , Triptófano/metabolismo , Animales , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Indoles/metabolismo , Indoles/farmacología , Humanos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Ratones , Carcinogénesis/metabolismo , Carcinogénesis/genética , Línea Celular Tumoral , Quinurenina/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Hígado/patología , Masculino
3.
bioRxiv ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38746129

RESUMEN

The actin filament (F-actin) bundling protein fascin-1 is highly enriched in many metastatic cancers. Fascin's contribution to metastasis have been ascribed to its enhancement of cell migration and invasion. However, mouse genetic studies clearly point to functions also in tumorigenesis, yet without mechanistic underpinnings. Here, we show that fascin expression promotes the formation of a non-canonical signaling complex that enables anchorage-independent proliferation. This complex shares similarities to focal adhesions and we refer to them as pseudo-adhesion signaling scaffolds (PASS). PASS are enriched with tyrosine phosphorylated proteins and require fascin's F-actin-bundling activity for its assembly. PASS serve as hubs for the Rac1/PAK/JNK proliferation signaling axis, driven by PASS-associated Rac-specific GEFs. Experimental disruption of either fascin or RacGEF function abrogates sustained proliferation of aggressive cancers in vitro and in vivo . These results add a new molecular element to the growing arsenal of metabolic and oncogenic signaling programs regulated by the cytoskeleton architecture.

4.
FEBS J ; 291(10): 2172-2190, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38431776

RESUMEN

Neuroblastoma poses significant challenges in clinical management. Despite its relatively low incidence, this malignancy contributes disproportionately to cancer-related childhood mortality. Tailoring treatments based on risk stratification, including MYCN oncogene amplification, remains crucial, yet high-risk cases often confront therapeutic resistance and relapse. Here, we explore the aryl hydrocarbon receptor (AHR), a versatile transcription factor implicated in diverse physiological functions such as xenobiotic response, immune modulation, and cell growth. Despite its varying roles in malignancies, AHR's involvement in neuroblastoma remains elusive. Our study investigates the interplay between AHR and its ligand kynurenine (Kyn) in neuroblastoma cells. Kyn is generated from tryptophan (Trp) by the activity of the enzymes indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO2). We found that neuroblastoma cells displayed sensitivity to the TDO2 inhibitor 680C91, exposing potential vulnerabilities. Furthermore, combining TDO2 inhibition with retinoic acid or irinotecan (two chemotherapeutic agents used to treat neuroblastoma patients) revealed synergistic effects in select cell lines. Importantly, clinical correlation analysis using patient data established a link between elevated expression of Kyn-AHR pathway genes and adverse prognosis, particularly in older children. These findings underscore the significance of the Kyn-AHR pathway in neuroblastoma progression, emphasizing its potential role as a therapeutic target.


Asunto(s)
Quinurenina , Neuroblastoma , Receptores de Hidrocarburo de Aril , Humanos , Quinurenina/metabolismo , Neuroblastoma/patología , Neuroblastoma/metabolismo , Neuroblastoma/genética , Neuroblastoma/tratamiento farmacológico , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/antagonistas & inhibidores , Línea Celular Tumoral , Triptófano Oxigenasa/metabolismo , Triptófano Oxigenasa/genética , Triptófano Oxigenasa/antagonistas & inhibidores , Tretinoina/farmacología , Transducción de Señal/efectos de los fármacos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
5.
J Biol Chem ; 300(3): 105773, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38382671

RESUMEN

The nucleolus, a membrane-less organelle, is responsible for ribosomal RNA transcription, ribosomal RNA processing, and ribosome assembly. Nucleolar size and number are indicative of a cell's protein synthesis rate and proliferative capacity, and abnormalities in the nucleolus have been linked to neurodegenerative diseases and cancer. In this study, we demonstrated that the nucleolar protein ZNF692 directly interacts with nucleophosmin 1 (NPM1). Knocking down ZNF692 resulted in the nucleolar redistribution of NPM1 in ring-like structures and reduced protein synthesis. Purified NPM1 forms spherical condensates in vitro but mixing it with ZNF692 produces irregular condensates more closely resembling living cell nucleoli. Our findings indicate that ZNF692, by interacting with NPM1, plays a critical role in regulating nucleolar architecture and function in living cells.


Asunto(s)
Nucléolo Celular , Proteínas de Unión al ADN , Nucleofosmina , Factores de Transcripción , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Proteínas Nucleares/metabolismo , Unión Proteica , ARN Ribosómico/metabolismo , Humanos , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/metabolismo
6.
Cell Commun Signal ; 21(1): 331, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985999

RESUMEN

INTRODUCTION: Inflammation plays a significant role in various cancers, including lung cancer, where the inflammatory cytokine IL-1ß is often elevated in the tumor microenvironment. Patients with lung adenocarcinoma show higher levels of serum IL-1ß compared to healthy individual. Moreover, IL-1ß blockade reduces the incidence and mortality of lung cancer. Our prior studies revealed that alveolar type-II cells, the precursors for lung adenocarcinoma, display an induction in the expression of the enzyme tryptophan 2,3-dioxygenase (TDO2) during normal lung development. This induction of TDO2 coincides with an increase in IL-1ß levels and is likely caused by IL-1ß. Given that cancer cells can co-opt developmentally regulated pathways, we hypothesized that IL-1ß may exert its pro-tumoral function by stimulating TDO2 and indoleamine 2, 3-dioxygenase-1 (IDO1), parallel enzymes involved in the conversion of tryptophan (Trp) into the immune-suppressive oncometabolite kynurenine (Kyn). Our goal was to determine whether IL-1ß is a common upstream regulator of immune checkpoint regulators. METHODS: To determine whether IL-1ß regulates IDO1, TDO2, PD-L1, and PD-L2, we measured mRNA and protein levels in lung adenocarcinoma cells lines (A549, H1792, H1838, H2347, H2228, HCC364 and HCC827) grown in 2D or 3D and in immortalized normal lung epithelial cells (HBEC3-KT and HSAEC1-KT). To determine the importance of the NFκB pathway in mediating IL-1ß -regulated cellular effects, we used siRNA to knockdown RelA/p65 in IL-1ß treated cells. The levels of Trp and Kyn in the IL-1ß-treated cells and media were measured by mass spectrometry. RESULTS: Upon IL-1ß stimulation, lung adenocarcinoma cells exhibited significant increases in IDO1 mRNA and protein levels, a response that depended on the NFκB pathway. Interestingly, this induction was more pronounced in 3D spheroid cultures compared to monolayer cultures and was not observed in normal immortalized lung epithelial cells. Furthermore, the conversion of Trp to Kyn increased in cells exposed to IL-1ß, aligning with the heightened IDO1 expression. Remarkably, IL-1ß also upregulated the expression of programmed death ligand-1 (PD-L1) and PD-L2 in multiple cell lines, indicating that IL-1ß triggers parallel immune-suppressive mechanisms in lung adenocarcinoma cells. CONCLUSIONS: Our studies demonstrate that lung adenocarcinoma cells, but not normal immortalized lung epithelial cells, respond to IL-1ß signaling by inducing the expression of parallel immune checkpoint proteins that have the potential to promote immune evasion. Video Abstract.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/metabolismo , Antígeno B7-H1/metabolismo , Quinurenina/metabolismo , Neoplasias Pulmonares/patología , ARN Mensajero , Triptófano , Microambiente Tumoral
7.
Cell Rep ; 42(10): 113280, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37851577

RESUMEN

Increased nucleolar size and activity correlate with aberrant ribosome biogenesis and enhanced translation in cancer cells. One of the first and rate-limiting steps in translation is the interaction of the 40S small ribosome subunit with mRNAs. Here, we report the identification of the zinc finger protein 692 (ZNF692), a MYC-induced nucleolar scaffold that coordinates the final steps in the biogenesis of the small ribosome subunit. ZNF692 forms a hub containing the exosome complex and ribosome biogenesis factors specialized in the final steps of 18S rRNA processing and 40S ribosome maturation in the granular component of the nucleolus. Highly proliferative cells are more reliant on ZNF692 than normal cells; thus, we conclude that effective production of small ribosome subunits is critical for translation efficiency in cancer cells.


Asunto(s)
Proteínas de Unión al ADN , Biosíntesis de Proteínas , Proteínas Ribosómicas , Subunidades Ribosómicas Pequeñas de Eucariotas , Factores de Transcripción , Nucléolo Celular/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Ribosomas/metabolismo , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismo , Humanos , Animales , Ratas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Mol Cancer Ther ; 22(6): 737-750, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37070671

RESUMEN

A select group of patients with hepatocellular carcinomas (HCC) benefit from surgical, radiologic, and systemic therapies that include a combination of anti-angiogenic and immune-checkpoint inhibitors. However, because HCC is generally asymptomatic in its early stages, this not only leads to late diagnosis, but also to therapy resistance. The nucleoside analogue 6-thio-dG (THIO) is a first-in-class telomerase-mediated telomere-targeting anticancer agent. In telomerase expressing cancer cells, THIO is converted into the corresponding 5'-triphosphate, which is efficiently incorporated into telomeres by telomerase, activating telomere damage responses and apoptotic pathways. Here, we show how THIO is effective in controlling tumor growth and, when combined with immune checkpoint inhibitors, is even more effective in a T-cell-dependent manner. We also show telomere stress induced by THIO increases both innate sensing and adaptive antitumor immunity in HCC. Importantly, the extracellular high-mobility group box 1 protein acts as a prototypical endogenous DAMP (Damage Associated Molecular Pattern) in eliciting adaptive immunity by THIO. These results provide a strong rationale for combining telomere-targeted therapy with immunotherapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Telomerasa , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Telomerasa/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Telómero/genética , Inmunidad Adaptativa
9.
FEBS J ; 290(1): 7-27, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-34687129

RESUMEN

Within the growing field of amino acid metabolism, tryptophan (Trp) catabolism is an area of increasing interest. Trp is essential for protein synthesis, and its metabolism gives rise to biologically active catabolites including serotonin and numerous metabolites in the kynurenine (Kyn) pathway. In normal tissues, the production of Trp metabolites is directly regulated by the tissue-specific expression of Trp-metabolizing enzymes. Alterations of these enzymes in cancers can shift the balance and lead to an increased production of specific byproducts that can function as oncometabolites. For example, increased expression of the enzyme indoleamine 2,3-dioxygenase, which converts Trp into Kyn, leads to an increase in Kyn levels in numerous cancers. Kyn functions as an oncometabolite in cancer cells by promoting the activity of the transcription factor aryl hydrocarbon receptor, which regulates progrowth genes. Moreover, Kyn also inhibits T-cell activity and thus allows cancer cells to evade clearance by the immune system. Therefore, targeting the Kyn pathway has become a therapeutic focus as a novel means to abrogate tumor growth and immune resistance. This review summarizes the biological role and regulation of Trp metabolism and its catabolites with an emphasis on tumor cell growth and immune evasion and outlines areas for future research focus.


Asunto(s)
Neoplasias , Triptófano , Humanos , Triptófano/metabolismo , Quinurenina/metabolismo , Neoplasias/genética , Neoplasias/terapia , Triptófano Oxigenasa/genética , Linfocitos T/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo
10.
Semin Cell Dev Biol ; 136: 64-74, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35410715

RESUMEN

The nucleolus is a large nuclear membraneless organelle responsible for ribosome biogenesis. Ribosomes are cytoplasmic macromolecular complexes comprising RNA and proteins that link amino acids together to form new proteins. The biogenesis of ribosomes is an intricate multistep process that involves the transcription of ribosomal DNA (rDNA), the processing of ribosomal RNA (rRNA), and the assembly of rRNA with ribosomal proteins to form active ribosomes. Nearly all steps necessary for ribosome production and maturation occur in the nucleolus. Nucleolar shape, size, and number are directly linked to ribosome biogenesis. Errors in the steps of ribosomal biogenesis are sensed by the nucleolus causing global alterations in nucleolar function and morphology. This phenomenon, known as nucleolar stress, can lead to molecular changes such as stabilization of p53, which in turn activates cell cycle arrest or apoptosis. In this review, we discuss recent work on the association of nucleolar stress with degenerative diseases and developmental defects. In addition, we highlight the importance of de novo nucleotide biosynthesis for the enhanced nucleolar activity of cancer cells and discuss targeting nucleotide biosynthesis as a strategy to activate nucleolar stress to specifically target cancer cells.


Asunto(s)
Nucléolo Celular , Neoplasias , Humanos , Ribosomas/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Neoplasias/metabolismo , Nucleótidos
11.
J Cell Sci ; 135(20)2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36148682

RESUMEN

The ligand-activated transcription factor aryl hydrocarbon receptor (AHR) regulates cellular detoxification, proliferation and immune evasion in a range of cell types and tissues, including cancer cells. In this study, we used RNA-sequencing to identify the signature of the AHR target genes regulated by the pollutant 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and the endogenous ligand kynurenine (Kyn), a tryptophan-derived metabolite. This approach identified a signature of six genes (CYP1A1, ALDH1A3, ABCG2, ADGRF1 and SCIN) as commonly activated by endogenous or exogenous ligands of AHR in multiple colon cancer cell lines. Among these, the actin-severing protein scinderin (SCIN) was necessary for cell proliferation; SCIN downregulation limited cell proliferation and its expression increased it. SCIN expression was elevated in a subset of colon cancer patient samples, which also contained elevated ß-catenin levels. Remarkably, SCIN expression promoted nuclear translocation of ß-catenin and activates the WNT pathway. Our study identifies a new mechanism for adhesion-mediated signaling in which SCIN, likely via its ability to alter the actin cytoskeleton, facilitates the nuclear translocation of ß-catenin. This article has an associated First Person interview with the first authors of the paper.


Asunto(s)
Neoplasias del Colon , Contaminantes Ambientales , Dibenzodioxinas Policloradas , Humanos , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Vía de Señalización Wnt/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Ligandos , Quinurenina , Triptófano , Actinas/metabolismo , Neoplasias del Colon/genética , ARN
12.
Cells ; 11(3)2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35159381

RESUMEN

The nucleolus harbors the machinery necessary to produce new ribosomes which are critical for protein synthesis. Nucleolar size, shape, and density are highly dynamic and can be adjusted to accommodate ribosome biogenesis according to the needs for protein synthesis. In cancer, cells undergo continuous proliferation; therefore, nucleolar activity is elevated due to their high demand for protein synthesis. The transcription factor and universal oncogene MYC promotes nucleolar activity by enhancing the transcription of ribosomal DNA (rDNA) and ribosomal proteins. This review summarizes the importance of nucleolar activity in mammalian cells, MYC's role in nucleolar regulation in cancer, and discusses how a better understanding (and the potential inhibition) of aberrant nucleolar activity in cancer cells could lead to novel therapeutics.


Asunto(s)
Neoplasias , ARN Ribosómico , Animales , Nucléolo Celular/metabolismo , ADN Ribosómico/genética , Mamíferos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Biosíntesis de Proteínas , ARN Ribosómico/genética , Ribosomas/metabolismo
13.
Biomed Opt Express ; 13(11): 5616-5627, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36733723

RESUMEN

Fast volumetric imaging of large fluorescent samples with high-resolution is required for many biological applications. Oblique plane microscopy (OPM) provides high spatiotemporal resolution, but the field of view is typically limited by its optical train and the pixel number of the camera. Mechanically scanning the sample or decreasing the overall magnification of the imaging system can partially address this challenge, albeit by reducing the volumetric imaging speed or spatial resolution, respectively. Here, we introduce a novel dual-axis scan unit for OPM that facilitates rapid and high-resolution volumetric imaging throughout a volume of 800 × 500 × 200 microns. This enables us to perform volumetric imaging of cell monolayers, spheroids and zebrafish embryos with subcellular resolution. Furthermore, we combined this microscope with a multi-perspective projection imaging technique that increases the volumetric interrogation rate to more than 10 Hz. This allows us to rapidly probe a large field of view in a dimensionality reduced format, identify features of interest, and volumetrically image these regions with high spatiotemporal resolution.

14.
PLoS Genet ; 16(11): e1009117, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33201894

RESUMEN

Glioblastoma is the most common and aggressive type of cancer in the brain; its poor prognosis is often marked by reoccurrence due to resistance to the chemotherapeutic agent temozolomide, which is triggered by an increase in the expression of DNA repair enzymes such as MGMT. The poor prognosis and limited therapeutic options led to studies targeted at understanding specific vulnerabilities of glioblastoma cells. Metabolic adaptations leading to increased synthesis of nucleotides by de novo biosynthesis pathways are emerging as key alterations driving glioblastoma growth. In this study, we show that enzymes necessary for the de novo biosynthesis of pyrimidines, DHODH and UMPS, are elevated in high grade gliomas and in glioblastoma cell lines. We demonstrate that DHODH's activity is necessary to maintain ribosomal DNA transcription (rDNA). Pharmacological inhibition of DHODH with the specific inhibitors brequinar or ML390 effectively depleted the pool of pyrimidines in glioblastoma cells grown in vitro and in vivo and impaired rDNA transcription, leading to nucleolar stress. Nucleolar stress was visualized by the aberrant redistribution of the transcription factor UBF and the nucleolar organizer nucleophosmin 1 (NPM1), as well as the stabilization of the transcription factor p53. Moreover, DHODH inhibition decreased the proliferation of glioblastoma cells, including temozolomide-resistant cells. Importantly, the addition of exogenous uridine, which reconstitutes the cellular pool of pyrimidine by the salvage pathway, to the culture media recovered the impaired rDNA transcription, nucleolar morphology, p53 levels, and proliferation of glioblastoma cells caused by the DHODH inhibitors. Our in vivo data indicate that while inhibition of DHODH caused a dramatic reduction in pyrimidines in tumor cells, it did not affect the overall pyrimidine levels in normal brain and liver tissues, suggesting that pyrimidine production by the salvage pathway may play an important role in maintaining these nucleotides in normal cells. Our study demonstrates that glioblastoma cells heavily rely on the de novo pyrimidine biosynthesis pathway to generate ribosomal RNA (rRNA) and thus, we identified an approach to inhibit ribosome production and consequently the proliferation of glioblastoma cells through the specific inhibition of the de novo pyrimidine biosynthesis pathway.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Nucléolo Celular/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Pirimidinas/biosíntesis , Animales , Antineoplásicos/uso terapéutico , Compuestos de Bifenilo/farmacología , Compuestos de Bifenilo/uso terapéutico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Nucléolo Celular/metabolismo , Dihidroorotato Deshidrogenasa , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Glioblastoma/patología , Humanos , Ratones , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/metabolismo , Nucleofosmina , Orotato Fosforribosiltransferasa/antagonistas & inhibidores , Orotato Fosforribosiltransferasa/metabolismo , Orotidina-5'-Fosfato Descarboxilasa/antagonistas & inhibidores , Orotidina-5'-Fosfato Descarboxilasa/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , ARN Ribosómico/biosíntesis , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Estrés Fisiológico/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
15.
J Biol Chem ; 295(35): 12398-12407, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32611766

RESUMEN

The transcription factor AHR (aryl hydrocarbon receptor) drives the expression of genes involved in detoxification pathways in cells exposed to pollutants and other small molecules. Moreover, AHR supports transcriptional programs that promote ribosome biogenesis and protein synthesis in cells stimulated to proliferate by the oncoprotein MYC. Thus, AHR is necessary for the proliferation of MYC-overexpressing cells. To define metabolic pathways in which AHR cooperates with MYC in supporting cell growth, here we used LC-MS-based metabolomics to examine the metabolome of MYC-expressing cells upon AHR knockdown. We found that AHR knockdown reduced lactate, S-lactoylglutathione, N-acetyl-l-alanine, 2-hydroxyglutarate, and UMP levels. Using our previously obtained RNA sequencing data, we found that AHR mediates the expression of the UMP-generating enzymes dihydroorotate dehydrogenase (quinone) (DHODH) and uridine monophosphate synthetase (UMPS), as well as lactate dehydrogenase A (LDHA), establishing a mechanism by which AHR regulates lactate and UMP production in MYC-overexpressing cells. AHR knockdown in glioblastoma cells also reduced the expression of LDHA (and lactate), DHODH, and UMPS but did not affect UMP levels, likely because of compensatory mechanisms in these cells. Our results indicate that AHR contributes to the regulation of metabolic pathways necessary for the proliferation of transformed cells.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Redes y Vías Metabólicas , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular Tumoral , Dihidroorotato Deshidrogenasa , Regulación Enzimológica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , L-Lactato Deshidrogenasa/biosíntesis , L-Lactato Deshidrogenasa/genética , Complejos Multienzimáticos/biosíntesis , Complejos Multienzimáticos/genética , Orotato Fosforribosiltransferasa/biosíntesis , Orotato Fosforribosiltransferasa/genética , Orotidina-5'-Fosfato Descarboxilasa/biosíntesis , Orotidina-5'-Fosfato Descarboxilasa/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/biosíntesis , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Proteínas Proto-Oncogénicas c-myc/genética , Receptores de Hidrocarburo de Aril/genética
16.
Cell Stress ; 4(1): 24-26, 2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31922097

RESUMEN

Tryptophan is one of the eight essential amino acids that must be obtained from the diet. Interestingly, tryptophan is the least abundant amino acid in most proteins, a large portion of cellular tryptophan is converted into metabolites of the serotonin and kynurenine pathways. In a recent study, (Venkateswaran, Lafita-Navarro et al., 2019, Genes Dev), we discovered that colon cancer cells display greater uptake and processing of tryptophan than normal colonic cells and tissues. This process is mediated by the oncogenic transcription factor MYC that promotes the expression of the tryptophan importers SLC1A5 and SLC7A5 and the tryptophan metabolizing enzyme AFMID. The metabolism of tryptophan in colon cancer cells generates kynurenine, a biologically active metabolite necessary to maintain continuous cell proliferation. Our results indicate that kynurenine functions as an oncometabolite, at least in part, by activating the transcription factor AHR, which then regulates growth promoting genes in cancer cells. We propose that blocking kynurenine production or activity can be an efficient approach to specifically limit the growth of colon cancer cells. Here, we describe our findings and new questions for future studies targeted at understanding AHR-independent function of kynurenine, as well as interfering with the enzyme AFMID as a new strategy to target the kynurenine pathway.

17.
Small GTPases ; 11(2): 86-94, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-29173017

RESUMEN

Members of the MYC family of proto-oncogenes are the most commonly deregulated genes in all human cancers. MYC proteins drive an increase in cellular proliferation and facilitate multiple aspects of tumor initiation and progression, thereby controlling all hallmarks of cancer. MYC's ability to drive metabolic reprogramming of tumor cells leading to biomass accumulation and cellular proliferation is the most studied function of these oncogenes. MYC also regulates tumor progression and is often implicated in resistance to chemotherapy and in metastasis. While most oncogenic functions of MYC are attributed to its role as a transcription factor, more recently, new roles of MYC as a pro-survival factor in the cytoplasm suggest a previously unappreciated diversity in MYC's roles in cancer progression. This review will focus on the role of MYC in invasion and will discuss the canonical functions of MYC in Epithelial to Mesenchymal Transition and the cytoplasmic functions of MYC-nick in collective migration.


Asunto(s)
Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Movimiento Celular , Transición Epitelial-Mesenquimal , Humanos , Invasividad Neoplásica , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Transcripción Genética
18.
Cell Commun Signal ; 17(1): 129, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31623618

RESUMEN

BACKGROUND: While regulated WNT activity is required for normal development and stem cell maintenance, mutations that lead to constitutive activation of the WNT pathway cause cellular transformation and drive colorectal cancer. Activation of the WNT pathway ultimately leads to the nuclear translocation of ß-catenin which, in complex with TCF/LEF factors, promotes the transcription of genes necessary for growth. The proto-oncogene MYC is one of the most critical genes activated downstream the WNT pathway in colon cancer. Here, we investigate the converse regulation of the WNT pathway by MYC. METHODS: We performed RNA-seq analyses to identify genes regulated in cells expressing MYC. We validated the regulation of genes in the WNT pathway including LEF1 by MYC using RT-qPCR, Western blotting, and ChIP-seq. We investigated the importance of LEF1 for the viability of MYC-expressing cells in in fibroblasts, epithelial cells, and colon cells. Bioinformatic analyses were utilized to define the expression of MYC-regulated genes in human colon cancer and metabolomics analyses were used to identify pathways regulated by LEF1 in MYC expressing cells. RESULTS: MYC regulates the levels of numerous WNT-related genes, including the ß-catenin co-transcription factor LEF1. MYC activates the transcription of LEF1 and is required for LEF1 expression in colon cancer cells and in primary colonic cells transformed by APC loss of function, a common mutation in colon cancer patients. LEF1 caused the retention of ß-catenin in the nucleus, leading to the activation of the WNT pathway in MYC-expressing cells. Consequently, MYC-expressing cells were sensitive to LEF1 inhibition. Moreover, we describe two examples of genes induced in MYC-expressing cells that require LEF1 activity: the peroxisome proliferator activated receptor delta (PPARδ) and the Acyl CoA dehydrogenase 9 (ACAD9). CONCLUSIONS: We demonstrated that MYC is a transcriptional regulator of LEF1 in colonic cells. Our work proposes a novel pathway by which MYC regulates proliferation through activating LEF1 expression which in turn activates the WNT pathway.


Asunto(s)
Factor de Unión 1 al Potenciador Linfoide/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Activación Transcripcional , Vía de Señalización Wnt , Acil-CoA Deshidrogenasas/genética , Línea Celular , Proliferación Celular , Neoplasias del Colon/patología , Técnicas de Silenciamiento del Gen , Humanos , Factor de Unión 1 al Potenciador Linfoide/deficiencia , PPAR delta/genética , Proto-Oncogenes Mas , beta Catenina/metabolismo
19.
Genes Dev ; 33(17-18): 1236-1251, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31416966

RESUMEN

Tumors display increased uptake and processing of nutrients to fulfill the demands of rapidly proliferating cancer cells. Seminal studies have shown that the proto-oncogene MYC promotes metabolic reprogramming by altering glutamine uptake and metabolism in cancer cells. How MYC regulates the metabolism of other amino acids in cancer is not fully understood. Using high-performance liquid chromatography (HPLC)-tandem mass spectrometry (LC-MS/MS), we found that MYC increased intracellular levels of tryptophan and tryptophan metabolites in the kynurenine pathway. MYC induced the expression of the tryptophan transporters SLC7A5 and SLC1A5 and the enzyme arylformamidase (AFMID), involved in the conversion of tryptophan into kynurenine. SLC7A5, SLC1A5, and AFMID were elevated in colon cancer cells and tissues, and kynurenine was significantly greater in tumor samples than in the respective adjacent normal tissue from patients with colon cancer. Compared with normal human colonic epithelial cells, colon cancer cells were more sensitive to the depletion of tryptophan. Blocking enzymes in the kynurenine pathway caused preferential death of established colon cancer cells and transformed colonic organoids. We found that only kynurenine and no other tryptophan metabolite promotes the nuclear translocation of the transcription factor aryl hydrocarbon receptor (AHR). Blocking the interaction between AHR and kynurenine with CH223191 reduced the proliferation of colon cancer cells. Therefore, we propose that limiting cellular kynurenine or its downstream targets could present a new strategy to reduce the proliferation of MYC-dependent cancer cells.


Asunto(s)
Neoplasias del Colon/fisiopatología , Quinurenina/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Triptófano/metabolismo , Sistema de Transporte de Aminoácidos ASC/genética , Antineoplásicos/farmacología , Arilformamidasa/genética , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Humanos , Indoles/farmacología , Quinurenina/genética , Transportador de Aminoácidos Neutros Grandes 1/genética , Antígenos de Histocompatibilidad Menor/genética , Oximas/farmacología , Proto-Oncogenes Mas , Sulfonamidas/farmacología
20.
Methods Mol Biol ; 1915: 149-160, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30617802

RESUMEN

As opposed to proteasome-mediated proteolysis that leads to protein degradation, calpain proteases carry out limited proteolytic cleavages of their substrates. The cleavage of some substrates can produce active fragments that perform functions that are different from those performed by the full-length proteins. Therefore, cleavage by calpains can operate as a posttranslational modification and increase the functional diversity of target proteins. Nevertheless, activation of protein function by calpain cleavage is still an understudied area in molecular biology. Identifying and functionally characterizing by products generated by calpain cleavage could lead to the discovery of biomarkers and the identification of novel drug targets for the treatment of human diseases. This chapter contains a workflow designed to experimentally characterize novel calpain substrates, including identification of potential calpain targets via Western blotting, characterization of calpain cleavage sites, and the study of cellular functions played by such cleaved products. We will employ MYC as an example for these experiments.


Asunto(s)
Calpaína/genética , Proteínas de la Membrana/química , Biología Molecular/métodos , Calpaína/química , Humanos , Proteínas de la Membrana/genética , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/genética , Procesamiento Proteico-Postraduccional/genética , Proteolisis , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA