Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Eur J Neurosci ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844747

RESUMEN

Despite widespread use of combination antiretroviral therapy (cART), there remains a subset of individuals who display cognitive impairment broadly known as HIV-associated neurocognitive disorder (HAND). Interestingly, HIV-infected cells continuously release the HIV-1 protein Tat even in the presence of cART. Persistent exposure to Tat is proposed to increase both neuroinflammation and neurotoxicity. In vitro evidence shows that matrix metalloproteinases (MMPs) are among the neuroinflammatory molecules induced by Tat, which are known to disrupt specialized neuronal extracellular matrix structures called perineuronal nets (PNNs). PNNs predominantly surround parvalbumin interneurons and help to buffer these cells from oxidant stress and to independently increase their excitability. In order to better understand the link between short-term exposure to Tat, neuroinflammation, and PNNs, we explored the direct effects of Tat on glial cells and neurons. Herein, we report that in mixed glial cultures, Tat directly increases the expression of proinflammatory molecules, including MMP-9. Moreover, direct injection of Tat protein into mouse hippocampus increases the expression of astrocyte and microglia markers as well as MMP-9. The number of PNNs is decreased following Tat exposure, followed later by decreased numbers of hippocampal parvalbumin-expressing neurons. In older mice, Tat induced significant increases in the gene expression of proinflammatory molecules including markers of gliosis, MMPs and complement system proteins. Taken together, these data support a direct effect of Tat on glial-derived MMP expression subsequently affecting PNNs and neuronal health, with older mice more susceptible to Tat-induced inflammation.

3.
J Neurosci ; 44(17)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38508712

RESUMEN

The mammalian hippocampus exhibits spontaneous sharp wave events (1-30 Hz) with an often-present superimposed fast ripple oscillation (120-220 Hz) to form a sharp wave ripple (SWR) complex. During slow-wave sleep or quiet restfulness, SWRs result from the sequential spiking of hippocampal cell assemblies initially activated during learned or imagined experiences. Additional cortical/subcortical areas exhibit SWR events that are coupled to hippocampal SWRs, and studies in mammals suggest that coupling may be critical for the consolidation and recall of specific memories. In the present study, we have examined juvenile male and female zebrafish and show that SWR events are intrinsically generated and maintained within the telencephalon and that their hippocampal homolog, the anterodorsolateral lobe (ADL), exhibits SW events with ∼9% containing an embedded ripple (SWR). Single-cell calcium imaging coupled to local field potential recordings revealed that ∼10% of active cells in the dorsal telencephalon participate in any given SW event. Furthermore, fluctuations in cholinergic tone modulate SW events consistent with mammalian studies. Moreover, the basolateral amygdala (BLA) homolog exhibits SW events with ∼5% containing an embedded ripple. Computing the SW peak coincidence difference between the ADL and BLA showed bidirectional communication. Simultaneous coupling occurred more frequently within the same hemisphere, and in coupled events across hemispheres, the ADL more commonly preceded BLA. Together, these data suggest conserved mechanisms across species by which SW and SWR events are modulated, and memories may be transferred and consolidated through regional coupling.


Asunto(s)
Hipocampo , Pez Cebra , Animales , Masculino , Hipocampo/fisiología , Femenino , Amígdala del Cerebelo/fisiología , Potenciales de Acción/fisiología , Ondas Encefálicas/fisiología
4.
J Neurochem ; 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38163875

RESUMEN

Resveratrol, a naturally occurring polyphenol that activates sirtuin 1 (SIRT1), has been shown to reduce overall levels of matrix metalloprotease-9 (MMP-9) in cerebrospinal fluid (CSF) samples from patients with Alzheimer's dementia (AD). Depending on the site of release, however, MMP-9 has the potential to improve or impair cognition. In particular, its release from microglia or pericytes proximal to the blood brain barrier can damage the basement membrane, while neuronal activity-dependent release of this protease from glutamatergic neurons can instead promote dendritic spine expansion and long-term potentiation of synaptic plasticity. In the present study, we test the hypothesis that resveratrol reduces overall MMP-9 levels in CSF samples from patients with APOE4, an allele associated with increased glial inflammation. We also examine the possibility that resveratrol reduces inflammation-associated MMP release from cultured glia but spares neuronal activity-dependent release from cultured cortical neurons. We observe that resveratrol decreases overall levels of MMP-2 and MMP-9 in CSF samples from AD patients. Resveratrol also reduces CSF levels of tissue inhibitor of metalloproteinases-1 (TIMP-1), glial-derived protein that restricts long-term potentiation of synaptic transmission, in individuals homozygous for APOE4. Consistent with these results, we observe that resveratrol reduces basal and lipopolysaccharide (LPS)-stimulated MMP and TIMP-1 release from cultured microglia and astrocytes. In contrast, however, resveratrol does not inhibit release of MMP-9 from cortical neurons. Overall, these results are consistent with the possibility that while resveratrol reduces potentially maladaptive MMP and TIMP-1 release from activated glia, neuroplasticity-promoting MMP release from neurons is spared. In contrast, resveratrol reduces release of neurocan and brevican, extracellular matrix components that restrict neuroplasticity, from both neurons and glia. These data underscore the diversity of resveratrol's actions with respect to affected cell types and molecular targets and also suggest that further studies may be warranted to determine if its effects on glial MMP release could make it a useful adjunct for AD- and/or anti-amyloid therapy-related damage to the blood brain barrier.

5.
Front Neurosci ; 17: 1188065, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304012

RESUMEN

Alzheimer's Disease (AD) and related dementias are a leading cause of death globally and are predicted to increase in prevalence. Despite this expected increase in the prevalence of AD, we have yet to elucidate the causality of the neurodegeneration observed in AD and we lack effective therapeutics to combat the progressive neuronal loss. Throughout the past 30 years, several non-mutually exclusive hypotheses have arisen to explain the causative pathologies in AD: amyloid cascade, hyper-phosphorylated tau accumulation, cholinergic loss, chronic neuroinflammation, oxidative stress, and mitochondrial and cerebrovascular dysfunction. Published studies in this field have also focused on changes in neuronal extracellular matrix (ECM), which is critical to synaptic formation, function, and stability. Two of the greatest non-modifiable risk factors for development of AD (aside from autosomal dominant familial AD gene mutations) are aging and APOE status, and two of the greatest modifiable risk factors for AD and related dementias are untreated major depressive disorder (MDD) and obesity. Indeed, the risk of developing AD doubles for every 5 years after ≥ 65, and the APOE4 allele increases AD risk with the greatest risk in homozygous APOE4 carriers. In this review, we will describe mechanisms by which excess ECM accumulation may contribute to AD pathology and discuss pathological ECM alterations that occur in AD as well as conditions that increase the AD risk. We will discuss the relationship of AD risk factors to chronic central nervous system and peripheral inflammation and detail ECM changes that may follow. In addition, we will discuss recent data our lab has obtained on ECM components and effectors in APOE4/4 and APOE3/3 expressing murine brain lysates, as well as human cerebrospinal fluid (CSF) samples from APOE3 and APOE4 expressing AD individuals. We will describe the principal molecules that function in ECM turnover as well as abnormalities in these molecular systems that have been observed in AD. Finally, we will communicate therapeutic interventions that have the potential to modulate ECM deposition and turnover in vivo.

6.
Neurobiol Dis ; 179: 106057, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36878326

RESUMEN

The APOE4 allele increases the risk for Alzheimer's disease (AD) in a dose-dependent manner and is also associated with cognitive decline in non-demented elderly controls. In mice with targeted gene replacement (TR) of murine APOE with human APOE3 or APOE4, the latter show reduced neuronal dendritic complexity and impaired learning. APOE4 TR mice also show reduced gamma oscillation power, a neuronal population activity which is important to learning and memory. Published work has shown that brain extracellular matrix (ECM) can reduce neuroplasticity as well as gamma power, while attenuation of ECM can instead enhance this endpoint. In the present study we examine human cerebrospinal fluid (CSF) samples from APOE3 and APOE4 individuals and brain lysates from APOE3 and APOE4 TR mice for levels of ECM effectors that can increase matrix deposition and restrict neuroplasticity. We find that CCL5, a molecule linked to ECM deposition in liver and kidney, is increased in CSF samples from APOE4 individuals. Levels of tissue inhibitor of metalloproteinases (TIMPs), which inhibit the activity of ECM-degrading enzymes, are also increased in APOE4 CSF as well as astrocyte supernatants brain lysates from APOE4 TR mice. Importantly, as compared to APOE4/wild-type heterozygotes, APOE4/CCR5 knockout heterozygotes show reduced TIMP levels and enhanced EEG gamma power. The latter also show improved learning and memory, suggesting that the CCR5/CCL5 axis could represent a therapeutic target for APOE4 individuals.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Ratones , Humanos , Animales , Anciano , Apolipoproteína E4/genética , Memoria a Corto Plazo , Apolipoproteína E3/genética , Ratones Transgénicos , Enfermedad de Alzheimer/genética , Apolipoproteínas E/genética , Receptores CCR5
8.
Behav Brain Res ; 408: 113288, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33836170

RESUMEN

Increased perineuronal net (PNN) deposition has been observed in association with corticosteroid administration and stress in rodent models of depression. PNNs are a specialized form of extracellular matrix (ECM) that may enhance GABA-mediated inhibitory neurotransmission to potentially restrict the excitation and plasticity of pyramidal glutamatergic neurons. In contrast, antidepressant administration increases levels of the PNN-degrading enzyme matrix metalloproteinase-9 (MMP-9), which enhances glutamatergic plasticity and neurotransmission. In the present study, we compare pro-MMP-9 levels and measures of stress in females from two mouse strains, C57BL/6 J and BALB/cJ, in the presence or absence of tail grasping versus tunnel-associated cage transfers. Prior work suggests that C57BL/6 J mice show relatively enhanced neuroplasticity and stress resilience, while BALB/c mice demonstrate enhanced susceptibility to adverse effects of stress. Herein we observe that as compared to the C57BL/6 J strain, BALB/c mice demonstrate a higher level of baseline anxiety as determined by elevated plus maze (EPM) testing. Moreover, as determined by open field testing, anxiety is differentially reduced in BALB/c mice by a choice-driven tunnel-entry cage transfer technique. Additionally, as compared to tail-handled C57BL/6 J mice, tail-handled BALB/c mice have reduced brain levels of pro-MMP-9 and increased levels of its endogenous inhibitor, tissue inhibitor of metalloproteinase-1 (TIMP-1); however, tunnel-associated cage transfer increases pro-MMP-9 levels in BALB/c mice. BALB/c mice also show increases in Western blot immunoreactive bands for brevican, a constituent of PNNs. Together, these data support the possibility that MMP-9, an effector of PNN remodeling, contributes to the phenotype of strain and handling-associated differences in behavior.


Asunto(s)
Conducta Animal/fisiología , Manejo Psicológico , Metaloproteinasa 9 de la Matriz/metabolismo , Resiliencia Psicológica , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología , Animales , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
9.
Eur J Neurosci ; 53(12): 3879-3888, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32673433

RESUMEN

Emerging evidence suggests that extracellular matrix (ECM) alterations occur with stress. Specifically, increases in perineuronal net (PNN) deposition have been observed in rodents exposed to chronic corticosterone or persistent social defeat stress. The PNN is a specific form of ECM that is predominantly localized to parvalbumin (PV)-expressing inhibitory interneurons where it modulates neuronal excitability and brain oscillations that are influenced by the same. Consistent with a role for ECM changes in contributing to the depressive phenotype, recent studies have demonstrated that monoamine reuptake inhibitor type antidepressants can reduce PNN deposition, improve behavior and stimulate changes in gamma oscillatory power that may be important to mood and memory. The present review will highlight studies in humans, rodents and zebrafish that have examined stress, PNN deposition and/or gamma oscillations with a focus on potential cellular and molecular underpinnings.


Asunto(s)
Depresión , Matriz Extracelular , Estrés Psicológico/fisiopatología , Animales , Depresión/fisiopatología , Humanos , Interneuronas , Parvalbúminas , Roedores , Pez Cebra
10.
J Neurosci ; 40(26): 5116-5136, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32439703

RESUMEN

Memory disruption in mild cognitive impairment (MCI) and Alzheimer's disease (AD) is poorly understood, particularly at early stages preceding neurodegeneration. In mouse models of AD, there are disruptions to sharp wave ripples (SWRs), hippocampal population events with a critical role in memory consolidation. However, the microcircuitry underlying these disruptions is under-explored. We tested whether a selective reduction in parvalbumin-expressing (PV) inhibitory interneuron activity underlies hyperactivity and SWR disruption. We employed the 5xFAD model of familial AD crossed with mouse lines labeling excitatory pyramidal cells (PCs) and inhibitory PV cells. We observed a 33% increase in frequency, 58% increase in amplitude, and 8% decrease in duration of SWRs in ex vivo slices from male and female three-month 5xFAD mice versus littermate controls. 5xFAD mice of the same age were impaired in a hippocampal-dependent memory task. Concurrent with SWR recordings, we performed calcium imaging, cell-attached, and whole-cell recordings of PC and PV cells within the CA1 region. PCs in 5xFAD mice participated in enlarged ensembles, with superficial PCs (sPCs) having a higher probability of spiking during SWRs. Both deep PCs (dPCs) and sPCs displayed an increased synaptic E/I ratio, suggesting a disinhibitory mechanism. In contrast, we observed a 46% spike rate reduction during SWRs in PV basket cells (PVBCs), while PV bistratified and axo-axonic cells were unimpaired. Excitatory synaptic drive to PVBCs was selectively reduced by 50%, resulting in decreased E/I ratio. Considering prior studies of intrinsic PV cell dysfunction in AD, these findings suggest alterations to the PC-PVBC microcircuit also contribute to impairment.SIGNIFICANCE STATEMENT We demonstrate that a specific subtype of inhibitory neuron, parvalbumin-expressing (PV) basket cells, have selectively reduced activity in a model of Alzheimer's disease (AD) during activity critical for the consolidation of memory. These results identify a potential cellular target for therapeutic intervention to restore aberrant network activity in early amyloid pathology. While PV cells have previously been identified as a potential therapeutic target, this study for the first time recognizes that other PV neuronal subtypes, including bistratified and axo-axonic cells, are spared. These experiments are the first to record synaptic and spiking activity during sharp wave ripple (SWR) events in early amyloid pathology and reveal that a selective decrease in excitatory synaptic drive to PV basket cells (PVBCs) likely underlies reduced function.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Hipocampo/fisiopatología , Interneuronas/fisiología , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Parvalbúminas/metabolismo , Células Piramidales/fisiología
11.
J Neurosci ; 40(22): 4418-4431, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32269106

RESUMEN

Emerging evidence suggests that there is a reduction in overall cortical excitatory to inhibitory balance in major depressive disorder (MDD), which afflicts ∼14%-20% of individuals. Reduced pyramidal cell arborization occurs with stress and MDD, and may diminish excitatory neurotransmission. Enhanced deposition of perineuronal net (PNN) components also occurs with stress. Since parvalbumin-expressing interneurons are the predominant cell population that is enveloped by PNNs, which enhance their ability to release GABA, excess PNN deposition likely increases pyramidal cell inhibition. In the present study, we investigate the potential for matrix metalloprotease-9 (MMP-9), an endopeptidase secreted in response to neuronal activity, to contribute to the antidepressant efficacy of the serotonin/norepinephrine reuptake inhibitor venlafaxine in male mice. Chronic venlafaxine increases MMP-9 levels in murine cortex, and increases both pyramidal cell arborization and PSD-95 expression in the cortex of WT but not MMP-9-null mice. We have previously shown that venlafaxine reduces PNN deposition and increases the power of ex vivo γ oscillations in conventionally housed mice. γ power is increased with pyramidal cell disinhibition and with remission from MDD. Herein we observe that PNN expression is increased in a corticosterone-induced stress model of disease and reduced by venlafaxine. Compared with mice that receive concurrent venlafaxine, corticosterone-treated mice also display reduced ex vivo γ power and impaired working memory. Autopsy-derived PFC samples show elevated MMP-9 levels in antidepressant-treated MDD patients compared with controls. These preclinical and postmortem findings highlight a link between extracellular matrix regulation and MDD.SIGNIFICANCE STATEMENT Reduced excitatory neurotransmission occurs with major depressive disorder, and may be normalized by antidepressant treatment. Underlying molecular mechanisms are, however, not well understood. Herein we investigate a potential role for an extracellular protease, released from neurons and known to play a role in learning and memory, in antidepressant-associated increases in excitatory transmission. Our data suggest that this protease, matrix metalloprotease-9, increases branching of excitatory neurons and concomitantly attenuates the perineuronal net to potentially reduce inhibitory input to these neurons. Matrix metalloprotease-9 may thus enhance overall excitatory/inhibitory balance and neuronal population dynamics, which are important to mood and memory.


Asunto(s)
Trastorno Depresivo Mayor/tratamiento farmacológico , Ritmo Gamma , Metaloproteinasa 9 de la Matriz/metabolismo , Inhibición Neural , Inhibidores de Captación de Serotonina y Norepinefrina/farmacología , Estrés Psicológico/complicaciones , Clorhidrato de Venlafaxina/farmacología , Adulto , Anciano , Animales , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Trastorno Depresivo Mayor/etiología , Femenino , Humanos , Masculino , Metaloproteinasa 9 de la Matriz/genética , Memoria a Corto Plazo , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Células Piramidales/metabolismo , Células Piramidales/patología , Inhibidores de Captación de Serotonina y Norepinefrina/uso terapéutico , Clorhidrato de Venlafaxina/uso terapéutico
12.
Exp Neurol ; 323: 113077, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31678140

RESUMEN

HIV-associated neurocognitive disorders (HAND) continue to persist despite effective control of viral replication. Although the mechanisms underlying HAND are poorly understood, recent attention has focused on altered neuronal population activity as a correlate of impaired cognition. However, while alterations in neuronal population activity in the gamma frequency range are noted in the setting of HAND, the underlying mechanisms for these changes is unclear. Perineuronal nets (PNNs) are a specialized extracellular matrix that surrounds a subset of inhibitory neurons important to the expression of neuronal oscillatory activity. In the present study, we observe that levels of PNN-degrading matrix metalloproteinases (MMPs) are elevated in HIV-infected post-mortem human brain tissue. Furthermore, analysis of two PNN components, aggrecan and brevican, reveals increased proteolysis in HIV-infected brains. In addition, local field potential recordings from ex vivo mouse hippocampal slices demonstrate that the power of carbachol-induced gamma activity is increased following PNN degradation. Together, these results provide a possible mechanism whereby increased MMP proteolysis of PNNs may stimulate altered neuronal oscillatory activity and contribute to HAND symptoms.


Asunto(s)
Complejo SIDA Demencia/metabolismo , Encéfalo/metabolismo , Matriz Extracelular/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Neuronas/metabolismo , Complejo SIDA Demencia/patología , Adulto , Agrecanos/metabolismo , Animales , Encéfalo/patología , Brevicano/metabolismo , Femenino , Ritmo Gamma/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Neuronas/patología , Proteolisis
13.
Glia ; 67(9): 1719-1729, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31124192

RESUMEN

The HIV-1 protein Tat is continually released by HIV-infected cells despite effective combination antiretroviral therapies (cART). Tat promotes neurotoxicity through enhanced expression of proinflammatory molecules from resident and infiltrating immune cells. These molecules include matrix metalloproteinases (MMPs), which are pathologically elevated in HIV, and are known to drive central nervous system (CNS) injury in varied disease settings. A subset of MMPs can activate G-protein coupled protease-activated receptor 1 (PAR-1), a receptor that is highly expressed on astrocytes. Although PAR-1 expression is increased in HIV-associated neurocognitive disorder (HAND), its role in HAND pathogenesis remains understudied. Herein, we explored Tat's ability to induce expression of the PAR-1 agonists MMP-3 and MMP-13. We also investigated MMP/PAR-1-mediated release of CCL2, a chemokine that drives CNS entry of HIV infected monocytes and remains a significant correlate of cognitive dysfunction in the era of cART. Tat exposure significantly increased the expression of MMP-3 and MMP-13. These PAR-1 agonists both stimulated the release of astrocytic CCL2, and both genetic knock-out and pharmacological inhibition of PAR-1 reduced CCL2 release. Moreover, in HIV-infected post-mortem brain tissue, within-sample analyses revealed a correlation between levels of PAR-1-activating MMPs, PAR-1, and CCL2. Collectively, these findings identify MMP/PAR-1 signaling to be involved in the release of CCL2, which may underlie Tat-induced neuroinflammation.


Asunto(s)
Astrocitos/metabolismo , Astrocitos/virología , Quimiocina CCL2/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Adulto , Animales , Células Cultivadas , Corteza Cerebral/metabolismo , Corteza Cerebral/virología , Femenino , VIH-1 , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal
14.
eNeuro ; 6(2)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31058213

RESUMEN

Microglia are in a privileged position to both affect and be affected by neuroinflammation, neuronal activity and injury, which are all hallmarks of seizures and the epilepsies. Hippocampal microglia become activated after prolonged, damaging seizures known as status epilepticus (SE). However, since SE causes both hyperactivity and injury of neurons, the mechanisms triggering this activation remain unclear, as does the relevance of the microglial activation to the ensuing epileptogenic processes. In this study, we use electroconvulsive shock (ECS) to study the effect of neuronal hyperactivity without neuronal degeneration on mouse hippocampal microglia. Unlike SE, ECS did not alter hippocampal CA1 microglial density, morphology, or baseline motility. In contrast, both ECS and SE produced a similar increase in ATP-directed microglial process motility in acute slices, and similarly upregulated expression of the chemokine C-C motif chemokine ligand 2 (CCL2). Whole-cell patch-clamp recordings of hippocampal CA1sr microglia showed that ECS enhanced purinergic currents mediated by P2X7 receptors in the absence of changes in passive properties or voltage-gated currents, or changes in receptor expression. This differs from previously described alterations in intrinsic characteristics which coincided with enhanced purinergic currents following SE. These ECS-induced effects point to a "seizure signature" in hippocampal microglia characterized by altered purinergic signaling. These data demonstrate that ictal activity per se can drive alterations in microglial physiology without neuronal injury. These physiological changes, which up until now have been associated with prolonged and damaging seizures, are of added interest as they may be relevant to electroconvulsive therapy (ECT), which remains a gold-standard treatment for depression.


Asunto(s)
Región CA1 Hipocampal , Movimiento Celular/fisiología , Electrochoque , Inflamación , Microglía/fisiología , Estado Epiléptico , Adenosina Trifosfato/metabolismo , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/fisiopatología , Modelos Animales de Enfermedad , Fenómenos Electrofisiológicos , Femenino , Inflamación/metabolismo , Inflamación/fisiopatología , Masculino , Ratones , Microglía/metabolismo , Técnicas de Placa-Clamp , Receptores Purinérgicos P2X7/metabolismo , Estado Epiléptico/metabolismo , Estado Epiléptico/fisiopatología , Regulación hacia Arriba
15.
Front Mol Neurosci ; 12: 117, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31133801

RESUMEN

Major depressive disorder is a debilitating condition that affects approximately 15% of the United States population. Though the neurophysiological mechanisms that underlie this disorder are not completely understood, both human and rodent studies suggest that excitatory/inhibitory (E/I) balance is reduced with the depressive phenotype. In contrast, antidepressant efficacy in responsive individuals correlates with increased excitatory neurotransmission in select brain regions, suggesting that the restoration of E/I balance may improve mood. Enhanced excitatory transmission can occur through mechanisms including increased dendritic arborization and synapse formation in pyramidal neurons. Reduced activity of inhibitory neurons may also contribute to antidepressant efficacy. Consistent with this possibility, the fast-acting antidepressant ketamine may act by selective inhibition of glutamatergic input to GABA releasing parvalbumin (PV)-expressing interneurons. Recent work has also shown that a negative allosteric modulator of the GABA-A receptor α subunit can improve depression-related behavior. PV-expressing interneurons are thought to represent critical pacemakers for synchronous network events. These neurons also represent the predominant GABAergic neuronal population that is enveloped by the perineuronal net (PNN), a lattice-like structure that is thought to stabilize glutamatergic input to this cell type. Disruption of the PNN reduces PV excitability and increases pyramidal cell excitability. Various antidepressant medications increase the expression of matrix metalloproteinases (MMPs), enzymes that can increase pyramidal cell dendritic arborization and spine formation. MMPs can also cleave PNN proteins to reduce PV neuron-mediated inhibition. The present review will focus on mechanisms that may underlie antidepressant efficacy, with a focus on monoamines as facilitators of increased matrix metalloprotease (MMP) expression and activation. Discussion will include MMP-dependent effects on pyramidal cell structure and function, as well as MMP-dependent effects on PV expressing interneurons. We conclude with discussion of antidepressant use for those at risk for Alzheimer's disease, and we also highlight areas for further study.

16.
J Neurochem ; 148(6): 810-821, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30697747

RESUMEN

Drugs that target monoaminergic transmission represent a first-line treatment for major depression. Though a full understanding of the mechanisms that underlie antidepressant efficacy is lacking, evidence supports a role for enhanced excitatory transmission. This can occur through two non-mutually exclusive mechanisms. The first involves increased function of excitatory neurons through relatively direct mechanisms such as enhanced dendritic arborization. Another mechanism involves reduced inhibitory function, which occurs with the rapid antidepressant ketamine. Consistent with this, GABAergic interneuron-mediated cortical inhibition is linked to reduced gamma oscillatory power, a rhythm also diminished in depression. Remission of depressive symptoms correlates with restoration of gamma power. As a result of strong excitatory input, reliable GABA release, and fast firing, PV-expressing neurons (PV neurons) represent critical pacemakers for synchronous oscillations. PV neurons also represent the predominant GABAergic population enveloped by perineuronal nets (PNNs), lattice-like structures that localize glutamatergic input. Disruption of PNNs reduces PV excitability and enhances gamma activity. Studies suggest that monoamine reuptake inhibitors reduce integrity of the PNN. Mechanisms by which these inhibitors reduce PNN integrity, however, remain largely unexplored. A better understanding of these issues might encourage development of therapeutics that best up-regulate PNN-modulating proteases. We observe that the serotonin/norepinephrine reuptake inhibitor venlafaxine increases hippocampal matrix metalloproteinase (MMP)-9 levels as determined by ELISA and concomitantly reduces PNN integrity in murine hippocampus as determined by analysis of sections following their staining with a fluorescent PNN-binding lectin. Moreover, venlafaxine-treated mice (30 mg/kg/day) show an increase in carbachol-induced gamma power in ex vivo hippocampal slices as determined by local field potential recording and Matlab analyses. Studies with mice deficient in matrix metalloproteinase 9 (MMP-9), a protease linked to PNN disruption in other settings, suggest that MMP-9 contributes to venlafaxine-enhanced gamma power. In conclusion, our results support the possibility that MMP-9 activity contributes to antidepressant efficacy through effects on the PNN that may in turn enhance neuronal population dynamics involved in mood and/or memory. Cover Image for this issue: doi: 10.1111/jnc.14498.


Asunto(s)
Antidepresivos de Segunda Generación/farmacología , Ritmo Gamma/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/metabolismo , Red Nerviosa/efectos de los fármacos , Clorhidrato de Venlafaxina/farmacología , Animales , Femenino , Ritmo Gamma/fisiología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proteolisis/efectos de los fármacos
17.
Sci Rep ; 8(1): 16230, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30385861

RESUMEN

Protease activated receptor-1 (PAR-1) and its ligand, matrix metalloproteinase-1 (MMP-1), are altered in several neurodegenerative diseases. PAR-1/MMP-1 signaling impacts neuronal activity in various brain regions, but their role in regulating synaptic physiology in the ventral striatum, which is implicated in motor function, is unknown. The ventral striatum contains two populations of GABAergic spiny projection neurons, D1 and D2 SPNs, which differ with respect to both synaptic inputs and projection targets. To evaluate the role of MMP-1/PAR-1 signaling in the regulation of ventral striatal synaptic function, we performed whole-cell recordings (WCR) from D1 and D2 SPNs in control mice, mice that overexpress MMP-1 (MMP-1OE), and MMP-1OE mice lacking PAR-1 (MMP-1OE/PAR-1KO). WCRs from MMP1-OE mice revealed an increase in spontaneous inhibitory post-synaptic current (sIPSC), miniature IPSC, and miniature excitatory PSC frequency in D1 SPNs but not D2 SPNs. This alteration may be partially PAR-1 dependent, as it was not present in MMP-1OE/PAR-1KO mice. Morphological reconstruction of D1 SPNs revealed increased dendritic complexity in the MMP-1OE, but not MMP-1OE/PAR-1KO mice. Moreover, MMP-1OE mice exhibited blunted locomotor responses to amphetamine, a phenotype also observed in MMP-1OE/PAR-1KO mice. Our data suggest PAR-1 dependent and independent MMP-1 signaling may lead to alterations in striatal neuronal function.


Asunto(s)
Expresión Génica , Metaloproteinasa 1 de la Matriz/genética , Neuritas/fisiología , Neuronas/fisiología , Núcleo Accumbens/citología , Núcleo Accumbens/metabolismo , Anfetamina/farmacología , Animales , Potenciales Postsinápticos Excitadores , Femenino , Humanos , Potenciales Postsinápticos Inhibidores , Masculino , Ratones , Ratones Noqueados , Potenciales Postsinápticos Miniatura , Neuronas/citología
18.
BMC Biol ; 16(1): 105, 2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30253757

RESUMEN

During hearing in mammals, "sensorineural" inner hair cells convert sound wave-generated mechanical input into electrical activity, resulting in glutamate release onto type I spiral ganglion neurons (SGNs) at specialized synapses known as "ribbon synapses". New findings published here in BMC Biology by Sonntag and colleagues indicate a role for the proteoglycan Brevican in forming perineurounal net (PNN) baskets at these synapses and controlling the spatial distribution of presynaptic voltage-gated calcium channels that regulate glutamate release. These findings may provide insight into the mechanism by which individual ribbon synapses within a single hair cell can function in an independent manner to facilitate hearing within a broad dynamic range.


Asunto(s)
Brevicano , Calcio , Animales , Matriz Extracelular , Cabello , Sinapsis
19.
Neural Plast ; 2018: 5735789, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29531525

RESUMEN

The perineuronal net (PNN) represents a lattice-like structure that is prominently expressed along the soma and proximal dendrites of parvalbumin- (PV-) positive interneurons in varied brain regions including the cortex and hippocampus. It is thus apposed to sites at which PV neurons receive synaptic input. Emerging evidence suggests that changes in PNN integrity may affect glutamatergic input to PV interneurons, a population that is critical for the expression of synchronous neuronal population discharges that occur with gamma oscillations and sharp-wave ripples. The present review is focused on the composition of PNNs, posttranslation modulation of PNN components by sulfation and proteolysis, PNN alterations in disease, and potential effects of PNN remodeling on neuronal plasticity at the single-cell and population level.


Asunto(s)
Encéfalo/metabolismo , Red Nerviosa/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Proteolisis , Animales , Encéfalo/patología , Humanos , Interneuronas/metabolismo , Interneuronas/patología , Red Nerviosa/patología , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , Neuronas/patología , Nervios Periféricos/metabolismo , Nervios Periféricos/patología
20.
Front Neurosci ; 12: 164, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29599704

RESUMEN

Sharp-wave ripples (SWRs) are spontaneous neuronal population events that occur in the hippocampus during sleep and quiet restfulness, and are thought to play a critical role in the consolidation of episodic memory. SWRs occur at a rate of 30-200 events per minute. Their overall abundance may, however, be reduced with aging and neurodegenerative disease. Here we report that the abundance of SWR within murine hippocampal slices can be increased by paced administration of a weak electrical stimulus, especially when the spontaneously occurring rate is low or compromised. Resultant SWRs have large variations in amplitude and ripple patterns, which are morphologically indistinguishable from those of spontaneous SWRs, despite identical stimulus parameters which presumably activate the same CA3 neurons surrounding the electrode. The stimulus intensity for reliably pacing SWRs is weaker than that required for inducing detectable evoked field potentials in CA1. Moreover, repetitive ~1 Hz stimuli with low intensity can reliably evoke thousands of SWRs without detectable LTD or "habituation." Our results suggest that weak stimuli may facilitate the spontaneous emergence of SWRs without significantly altering their characteristics. Pacing SWRs with weak electric stimuli could potentially be useful for restoring their abundance in the damaged hippocampus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA