Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Science ; 374(6572): 1227-1237, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34855504

RESUMEN

For electrons to continuously enter and flow through the mitochondrial electron transport chain (ETC), they must ultimately land on a terminal electron acceptor (TEA), which is known to be oxygen in mammals. Paradoxically, we find that complex I and dihydroorotate dehydrogenase (DHODH) can still deposit electrons into the ETC when oxygen reduction is impeded. Cells lacking oxygen reduction accumulate ubiquinol, driving the succinate dehydrogenase (SDH) complex in reverse to enable electron deposition onto fumarate. Upon inhibition of oxygen reduction, fumarate reduction sustains DHODH and complex I activities. Mouse tissues display varying capacities to use fumarate as a TEA, most of which net reverse the SDH complex under hypoxia. Thus, we delineate a circuit of electron flow in the mammalian ETC that maintains mitochondrial functions under oxygen limitation.


Asunto(s)
Transporte de Electrón , Electrones , Fumaratos/metabolismo , Animales , Hipoxia de la Célula , Línea Celular , Línea Celular Tumoral , Dihidroorotato Deshidrogenasa/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Succinato Deshidrogenasa/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33483422

RESUMEN

In mammalian cells, nutrients and growth factors signal through an array of upstream proteins to regulate the mTORC1 growth control pathway. Because the full complement of these proteins has not been systematically identified, we developed a FACS-based CRISPR-Cas9 genetic screening strategy to pinpoint genes that regulate mTORC1 activity. Along with almost all known positive components of the mTORC1 pathway, we identified many genes that impact mTORC1 activity, including DCAF7, CSNK2B, SRSF2, IRS4, CCDC43, and HSD17B10 Using the genome-wide screening data, we generated a focused sublibrary containing single guide RNAs (sgRNAs) targeting hundreds of genes and carried out epistasis screens in cells lacking nutrient- and stress-responsive mTORC1 modulators, including GATOR1, AMPK, GCN2, and ATF4. From these data, we pinpointed mitochondrial function as a particularly important input into mTORC1 signaling. While it is well appreciated that mitochondria signal to mTORC1, the mechanisms are not completely clear. We find that the kinases AMPK and HRI signal, with varying kinetics, mitochondrial distress to mTORC1, and that HRI acts through the ATF4-dependent up-regulation of both Sestrin2 and Redd1. Loss of both AMPK and HRI is sufficient to render mTORC1 signaling largely resistant to mitochondrial dysfunction induced by the ATP synthase inhibitor oligomycin as well as the electron transport chain inhibitors piericidin and antimycin. Taken together, our data reveal a catalog of genes that impact the mTORC1 pathway and clarify the multifaceted ways in which mTORC1 senses mitochondrial dysfunction.


Asunto(s)
Factor de Transcripción Activador 4/genética , Edición Génica/métodos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Mitocondrias/genética , Proteínas Serina-Treonina Quinasas/genética , 3-Hidroxiacil-CoA Deshidrogenasas/genética , 3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , Factor de Transcripción Activador 4/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Aminoácidos/deficiencia , Aminoácidos/farmacología , Antimicina A/análogos & derivados , Antimicina A/farmacología , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Medios de Cultivo/química , Medios de Cultivo/farmacología , Regulación de la Expresión Génica , Genoma Humano , Glucosa/deficiencia , Glucosa/farmacología , Células HEK293 , Humanos , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Oligomicinas/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Transducción de Señal , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
3.
Nature ; 588(7839): 699-704, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33208952

RESUMEN

Dozens of genes contribute to the wide variation in human pigmentation. Many of these genes encode proteins that localize to the melanosome-the organelle, related to the lysosome, that synthesizes pigment-but have unclear functions1,2. Here we describe MelanoIP, a method for rapidly isolating melanosomes and profiling their labile metabolite contents. We use this method to study MFSD12, a transmembrane protein of unknown molecular function that, when suppressed, causes darker pigmentation in mice and humans3,4. We find that MFSD12 is required to maintain normal levels of cystine-the oxidized dimer of cysteine-in melanosomes, and to produce cysteinyldopas, the precursors of pheomelanin synthesis made in melanosomes via cysteine oxidation5,6. Tracing and biochemical analyses show that MFSD12 is necessary for the import of cysteine into melanosomes and, in non-pigmented cells, lysosomes. Indeed, loss of MFSD12 reduced the accumulation of cystine in lysosomes of fibroblasts from patients with cystinosis, a lysosomal-storage disease caused by inactivation of the lysosomal cystine exporter cystinosin7-9. Thus, MFSD12 is an essential component of the cysteine importer for melanosomes and lysosomes.


Asunto(s)
Cisteína/metabolismo , Lisosomas/metabolismo , Melanosomas/metabolismo , Proteínas de la Membrana/metabolismo , Transporte Biológico , Fraccionamiento Celular , Línea Celular , Cistina/metabolismo , Cistinosis/genética , Cistinosis/metabolismo , Fibroblastos , Humanos , Melaninas/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Oxidación-Reducción
4.
J Cell Sci ; 132(21)2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31722960

RESUMEN

The mechanistic target of rapamycin (mTOR) signaling pathway coordinates environmental and intracellular cues to control eukaryotic cell growth. As a pivot point between anabolic and catabolic processes, mTOR complex 1 (mTORC1) signaling has established roles in regulating metabolism, translation and autophagy. Hyperactivity of the mTOR pathway is associated with numerous human diseases, including diabetes, cancer and epilepsy. Pharmacological inhibition of the mTOR pathway can extend lifespan in a variety of model organisms. Given its broad control of essential cellular processes and clear relevance to human health, there is extensive interest in elucidating how upstream inputs regulate mTORC1 activation. In this Cell Science at a Glance article and accompanying poster, we summarize our understanding of how extracellular and intracellular signals feed into the mTOR pathway, how the lysosome acts as an mTOR signaling hub, and how downstream signaling controls autophagy and lysosome biogenesis.


Asunto(s)
Autofagia/fisiología , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Humanos , Nutrientes/metabolismo , Transducción de Señal/fisiología
5.
Nature ; 556(7699): 64-69, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29590090

RESUMEN

Nutrients, such as amino acids and glucose, signal through the Rag GTPases to activate mTORC1. The GATOR1 protein complex-comprising DEPDC5, NPRL2 and NPRL3-regulates the Rag GTPases as a GTPase-activating protein (GAP) for RAGA; loss of GATOR1 desensitizes mTORC1 signalling to nutrient starvation. GATOR1 components have no sequence homology to other proteins, so the function of GATOR1 at the molecular level is currently unknown. Here we used cryo-electron microscopy to solve structures of GATOR1 and GATOR1-Rag GTPases complexes. GATOR1 adopts an extended architecture with a cavity in the middle; NPRL2 links DEPDC5 and NPRL3, and DEPDC5 contacts the Rag GTPase heterodimer. Biochemical analyses reveal that our GATOR1-Rag GTPases structure is inhibitory, and that at least two binding modes must exist between the Rag GTPases and GATOR1. Direct interaction of DEPDC5 with RAGA inhibits GATOR1-mediated stimulation of GTP hydrolysis by RAGA, whereas weaker interactions between the NPRL2-NPRL3 heterodimer and RAGA execute GAP activity. These data reveal the structure of a component of the nutrient-sensing mTORC1 pathway and a non-canonical interaction between a GAP and its substrate GTPase.


Asunto(s)
Microscopía por Crioelectrón , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/ultraestructura , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP Monoméricas/ultraestructura , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Aminoácidos/deficiencia , Proteínas Activadoras de GTPasa/antagonistas & inhibidores , Proteínas Activadoras de GTPasa/química , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/química , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/química , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Proteínas Represoras/ultraestructura , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/ultraestructura
6.
Science ; 358(6364): 813-818, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-29123071

RESUMEN

mTOR complex 1 (mTORC1) regulates cell growth and metabolism in response to multiple environmental cues. Nutrients signal via the Rag guanosine triphosphatases (GTPases) to promote the localization of mTORC1 to the lysosomal surface, its site of activation. We identified SAMTOR, a previously uncharacterized protein, which inhibits mTORC1 signaling by interacting with GATOR1, the GTPase activating protein (GAP) for RagA/B. We found that the methyl donor S-adenosylmethionine (SAM) disrupts the SAMTOR-GATOR1 complex by binding directly to SAMTOR with a dissociation constant of approximately 7 µM. In cells, methionine starvation reduces SAM levels below this dissociation constant and promotes the association of SAMTOR with GATOR1, thereby inhibiting mTORC1 signaling in a SAMTOR-dependent fashion. Methionine-induced activation of mTORC1 requires the SAM binding capacity of SAMTOR. Thus, SAMTOR is a SAM sensor that links methionine and one-carbon metabolism to mTORC1 signaling.


Asunto(s)
Lisosomas/enzimología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , S-Adenosilmetionina/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Dominios Proteicos , Mapas de Interacción de Proteínas , Transducción de Señal
7.
Nature ; 543(7645): 438-442, 2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28199306

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) is a central regulator of cell growth that responds to diverse environmental signals and is deregulated in many human diseases, including cancer and epilepsy. Amino acids are a key input to this system, and act through the Rag GTPases to promote the translocation of mTORC1 to the lysosomal surface, its site of activation. Multiple protein complexes regulate the Rag GTPases in response to amino acids, including GATOR1, a GTPase activating protein for RAGA, and GATOR2, a positive regulator of unknown molecular function. Here we identify a protein complex (KICSTOR) that is composed of four proteins, KPTN, ITFG2, C12orf66 and SZT2, and that is required for amino acid or glucose deprivation to inhibit mTORC1 in cultured human cells. In mice that lack SZT2, mTORC1 signalling is increased in several tissues, including in neurons in the brain. KICSTOR localizes to lysosomes; binds and recruits GATOR1, but not GATOR2, to the lysosomal surface; and is necessary for the interaction of GATOR1 with its substrates, the Rag GTPases, and with GATOR2. Notably, several KICSTOR components are mutated in neurological diseases associated with mutations that lead to hyperactive mTORC1 signalling. Thus, KICSTOR is a lysosome-associated negative regulator of mTORC1 signalling, which, like GATOR1, is mutated in human disease.


Asunto(s)
Proteínas Portadoras/metabolismo , Lisosomas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Aminoácidos/metabolismo , Animales , Proteínas Portadoras/química , Proteínas Portadoras/genética , Línea Celular , Femenino , Proteínas Activadoras de GTPasa , Glucosa/deficiencia , Glucosa/metabolismo , Humanos , Cadenas alfa de Integrinas , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Unión Proteica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Especificidad por Sustrato , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
8.
Nat Med ; 23(2): 235-241, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28024083

RESUMEN

Mammalian tissues rely on a variety of nutrients to support their physiological functions. It is known that altered metabolism is involved in the pathogenesis of cancer, but which nutrients support the inappropriate growth of intact malignant tumors is incompletely understood. Amino acids are essential nutrients for many cancer cells that can be obtained through the scavenging and catabolism of extracellular protein via macropinocytosis. In particular, macropinocytosis can be a nutrient source for pancreatic cancer cells, but it is not fully understood how the tumor environment influences metabolic phenotypes and whether macropinocytosis supports the maintenance of amino acid levels within pancreatic tumors. Here we utilize miniaturized plasma exchange to deliver labeled albumin to tissues in live mice, and we demonstrate that breakdown of albumin contributes to the supply of free amino acids in pancreatic tumors. We also deliver albumin directly into tumors using an implantable microdevice, which was adapted and modified from ref. 9. Following implantation, we directly observe protein catabolism and macropinocytosis in situ by pancreatic cancer cells, but not by adjacent, non-cancerous pancreatic tissue. In addition, we find that intratumoral inhibition of macropinocytosis decreases amino acid levels. Taken together, these data suggest that pancreatic cancer cells consume extracellular protein, including albumin, and that this consumption serves as an important source of amino acids for pancreatic cancer cells in vivo.


Asunto(s)
Aminoácidos/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Pinocitosis , Proteolisis , Albúmina Sérica/metabolismo , Albúminas/metabolismo , Animales , Línea Celular Tumoral , Cromatografía de Gases , Modelos Animales de Enfermedad , Espacio Extracelular/metabolismo , Ratones , Microscopía de Fluorescencia por Excitación Multifotónica , Isótopos de Nitrógeno , Plasmaféresis , Proteínas/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
9.
Cell ; 167(1): 145-157.e17, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27662087

RESUMEN

The type-1 ryanodine receptor (RyR1) is an intracellular calcium (Ca(2+)) release channel required for skeletal muscle contraction. Here, we present cryo-EM reconstructions of RyR1 in multiple functional states revealing the structural basis of channel gating and ligand-dependent activation. Binding sites for the channel activators Ca(2+), ATP, and caffeine were identified at interdomain interfaces of the C-terminal domain. Either ATP or Ca(2+) alone induces conformational changes in the cytoplasmic assembly ("priming"), without pore dilation. In contrast, in the presence of all three activating ligands, high-resolution reconstructions of open and closed states of RyR1 were obtained from the same sample, enabling analyses of conformational changes associated with gating. Gating involves global conformational changes in the cytosolic assembly accompanied by local changes in the transmembrane domain, which include bending of the S6 transmembrane segment and consequent pore dilation, displacement, and deformation of the S4-S5 linker and conformational changes in the pseudo-voltage-sensor domain.


Asunto(s)
Agonistas de los Canales de Calcio/química , Activación del Canal Iónico , Contracción Muscular , Canal Liberador de Calcio Receptor de Rianodina/química , Animales , Sitios de Unión , Cafeína/química , Calcio/química , Microscopía por Crioelectrón , Ligandos , Dominios Proteicos , Conejos , Proteínas de Unión a Tacrolimus/química
10.
J Biol Chem ; 291(5): 2412-21, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26598523

RESUMEN

DEAD-box proteins utilize ATP to bind and remodel RNA and RNA-protein complexes. All DEAD-box proteins share a conserved core that consists of two RecA-like domains. The core is flanked by subfamily-specific extensions of idiosyncratic function. The Ded1/DDX3 subfamily of DEAD-box proteins is of particular interest as members function during protein translation, are essential for viability, and are frequently altered in human malignancies. Here, we define the function of the subfamily-specific extensions of the human DEAD-box protein DDX3. We describe the crystal structure of the subfamily-specific core of wild-type DDX3 at 2.2 Å resolution, alone and in the presence of AMP or nonhydrolyzable ATP. These structures illustrate a unique interdomain interaction between the two ATPase domains in which the C-terminal domain clashes with the RNA-binding surface. Destabilizing this interaction accelerates RNA duplex unwinding, suggesting that it is present in solution and inhibitory for catalysis. We use this core fragment of DDX3 to test the function of two recurrent medulloblastoma variants of DDX3 and find that both inactivate the protein in vitro and in vivo. Taken together, these results redefine the structural and functional core of the DDX3 subfamily of DEAD-box proteins.


Asunto(s)
ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , Regulación de la Expresión Génica , Adenosina Trifosfatasas/química , Animales , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Drosophila melanogaster , Prueba de Complementación Genética , Humanos , Meduloblastoma/metabolismo , Ratones , Simulación de Dinámica Molecular , Mutación , Estructura Terciaria de Proteína , ARN/química , Rec A Recombinasas/química , Proteínas Recombinantes/química , Saccharomyces cerevisiae , Schizosaccharomyces , Pez Cebra
11.
Protein Sci ; 25(3): 638-49, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26650549

RESUMEN

Proper maintenance of RNA structure and dynamics is essential to maintain cellular health. Multiple families of RNA chaperones exist in cells to modulate RNA structure, RNA-protein complexes, and RNA granules. The largest of these families is the DEAD-box proteins, named after their catalytic Asp-Glu-Ala-Asp motif. The human DEAD-box protein DDX3 is implicated in diverse biological processes including translation initiation and is mutated in numerous cancers. Like many DEAD-box proteins, DDX3 is essential to cellular health and exhibits dosage sensitivity, such that both decreases and increases in protein levels can be lethal. Therefore, chemical inhibition would be an ideal tool to probe the function of DDX3. However, most DEAD-box protein active sites are extremely similar, complicating the design of specific inhibitors. Here, we show that a chemical genetic approach best characterized in protein kinases, known as analog-sensitive chemical inhibition, is viable for DDX3 and possibly other DEAD-box proteins. We present an expanded active-site mutant that is tolerated in vitro and in vivo, and is sensitive to chemical inhibition by a novel bulky inhibitor. Our results highlight a course towards analog sensitive chemical inhibition of DDX3 and potentially the entire DEAD-box protein family.


Asunto(s)
ARN Helicasas DEAD-box/antagonistas & inhibidores , ARN Helicasas DEAD-box/química , Tiazoles/química , Tiazoles/farmacología , Adenosina Monofosfato/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico/efectos de los fármacos , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Humanos , Modelos Moleculares , Mutación , ARN/química , ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA