Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int Ophthalmol ; 43(7): 2575-2588, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36715956

RESUMEN

PURPOSE: Due to the inimitable anatomical structure of the eyeball and various physiological barriers, conventional ocular local administration is often complicated by apparent shortcomings, such as limited bioavailability and short drug retention. Thus, developing methods for sustainable, safe and efficient drug delivery to ocular target sites has long been an urgent need. This study briefly summarizes the barriers to ocular drug administration and various ocular drug delivery routes and highlights recent progress in ocular implantable sustained-release drug delivery systems (DDSs) to provide literature evidence for developing novel ocular implants for sustained drug delivery. METHODS: We conducted a comprehensive search of studies on ocular implantable sustained-release DDSs in PubMed and Web of Science using the following keywords: ocular, implantable and drug delivery system. More than 400 papers were extracted. Publications focused on sustained and controlled drug release were primarily considered. Experimental articles involving DDSs that cannot be implanted into the eye through surgeries and cannot be inserted into ocular tissues in solid form were excluded. Approximately 143 publications were reviewed to summarize the most current information on the subject. RESULTS: In recent years, numerous ocular sustained-release DDSs using lipids, nanoparticles and hydrogels as carriers have emerged. With unique properties and systematic design, ocular implantable sustained-release DDSs are able to continuously maintain drug release, effectively sustain the therapeutic concentration in target tissues, and substantially enhance the therapeutic efficacy. Nevertheless, few ocular implantable sustained-release DDSs have been available in clinical use. CONCLUSIONS: Ocular implantable sustained-release DDSs have become a new focus in the field of ocular drug development through unique designs and improvements in the materials of drug carriers, administration methods and dosage forms. With more ocular implantable sustained-release DDSs being commercialized, ocular therapeutics may be revolutionized.


Asunto(s)
Sistemas de Liberación de Medicamentos , Ojo , Humanos , Preparaciones de Acción Retardada/farmacología , Preparaciones de Acción Retardada/uso terapéutico , Portadores de Fármacos/química , Portadores de Fármacos/farmacología , Administración Oftálmica
2.
Oxid Med Cell Longev ; 2020: 2896036, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32831993

RESUMEN

Age-related macular degeneration (AMD) is a leading cause of severe visual loss and irreversible blindness in the elderly population worldwide. Retinal pigment epithelial (RPE) cells are the major site of pathological alterations in AMD. They are responsible for the phagocytosis of shed photoreceptor outer segments (POSs) and clearance of cellular waste under physiological conditions. Age-related, cumulative oxidative stimuli contribute to the pathogenesis of AMD. Excessive oxidative stress induces RPE cell degeneration and incomplete digestion of POSs, leading to the continuous accumulation of cellular waste (such as lipofuscin). Autophagy is a major system of degradation of damaged or unnecessary proteins. However, degenerative RPE cells in AMD patients cannot perform autophagy sufficiently to resist oxidative damage. Increasing evidence supports the idea that enhancing the autophagic process can properly alleviate oxidative injury in AMD and protect RPE and photoreceptor cells from degeneration and death, although overactivated autophagy may lead to cell death at early stages of retinal degenerative diseases. The crosstalk among the NFE2L2, PGC-1, p62, AMPK, and PI3K/Akt/mTOR pathways may play a crucial role in improving disturbed autophagy and mitigating the progression of AMD. In this review, we discuss how autophagy prevents oxidative damage in AMD, summarize potential neuroprotective strategies for therapeutic interventions, and provide an overview of these neuroprotective mechanisms.


Asunto(s)
Autofagia/genética , Degeneración Macular/genética , Estrés Oxidativo/genética , Anciano , Animales , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...