Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 523
1.
Res Sq ; 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38585893

Background: Viscoelastic hemostatic assays (VHA) provide more comprehensive assessments of coagulation compared to conventional coagulation assays. While VHAs have enabled guided hemorrhage control therapies, improving clinical outcomes in life-threatening hemorrhage, the role of VHAs in intracerebral hemorrhage (ICH) is unclear. If VHAs can identify coagulation abnormalities relevant for ICH outcomes, this would support the need to investigate the role of VHAs in ICH treatment paradigms. Thus, we investigated whether VHA assessments of coagulation relate to long-term ICH outcomes. Methods: Spontaneous ICH patients enrolled into a single-center cohort study receiving admission Rotational Thromboelastometry (ROTEM) VHA testing between 2013 and 2020 were assessed. Patients with prior anticoagulant use or coagulopathy on conventional coagulation assays were excluded. Primary ROTEM exposure variables were coagulation kinetics and clot strength assessments. Poor long-term outcome was defined as modified Rankin Scale ≥ 4 at 6 months. Logistic regression analyses assessed associations of ROTEM parameters with clinical outcomes after adjusting for ICH severity and hemoglobin concentration. Results: Of 44 patients analyzed, mean age was 64, 57% were female, and the median ICH volume was 23 mL. Poor 6-month outcome was seen in 64%. In our multivariable regression models, slower, prolonged coagulation kinetics (adjusted OR for every second increase in clot formation time: 1.04, 95% CI: 1.00-1.09, p = 0.04) and weaker clot strength (adjusted OR for every millimeter increase of maximum clot firmness: 0.84, 95% CI: 0.71-0.99, p = 0.03) were separately associated with poor long-term outcomes. Conclusions: Slower, prolonged coagulation kinetics and weaker clot strength on admission VHA ROTEM testing, not attributable to anticoagulant use, were associated with poor long-term outcomes after ICH. Further work is needed to clarify the generalizability and the underlying mechanisms of these VHA findings to assess whether VHA guided treatments should be incorporated into ICH care.

2.
Article En | MEDLINE | ID: mdl-38629847

Intramedullary lesions of the spinal cord are relatively uncommon but can present with debilitating symptoms.1 These lesions are managed surgically if persistently symptomatic or after conservative treatment has failed.2 The patient consented to the procedure and the publication of their image. Here, the authors present the case of an intramedullary cavernous malformation and demonstrate the use of multiple preoperative and intraoperative adjuncts to characterize the lesion, confirm location, and allow for real-time evaluation of lesion removal during surgery.1-5 The video also demonstrates the use of neurophysiological monitoring and the technical nuances of safe microsurgical dissection for lesions within the spinal cord.

3.
Circulation ; 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38686559

BACKGROUND: Atherosclerosis, a leading cause of cardiovascular disease, involves the pathological activation of various cell types, including immunocytes (eg, macrophages and T cells), smooth muscle cells (SMCs), and endothelial cells. Accumulating evidence suggests that transition of SMCs to other cell types, known as phenotypic switching, plays a central role in atherosclerosis development and complications. However, the characteristics of SMC-derived cells and the underlying mechanisms of SMC transition in disease pathogenesis remain poorly understood. Our objective is to characterize tumor cell-like behaviors of SMC-derived cells in atherosclerosis, with the ultimate goal of developing interventions targeting SMC transition for the prevention and treatment of atherosclerosis. METHODS: We used SMC lineage tracing mice and human tissues and applied a range of methods, including molecular, cellular, histological, computational, human genetics, and pharmacological approaches, to investigate the features of SMC-derived cells in atherosclerosis. RESULTS: SMC-derived cells in mouse and human atherosclerosis exhibit multiple tumor cell-like characteristics, including genomic instability, evasion of senescence, hyperproliferation, resistance to cell death, invasiveness, and activation of comprehensive cancer-associated gene regulatory networks. Specific expression of the oncogenic mutant KrasG12D in SMCs accelerates phenotypic switching and exacerbates atherosclerosis. Furthermore, we provide proof of concept that niraparib, an anticancer drug targeting DNA damage repair, attenuates atherosclerosis progression and induces regression of lesions in advanced disease in mouse models. CONCLUSIONS: Our findings demonstrate that atherosclerosis is an SMC-driven tumor-like disease, advancing our understanding of its pathogenesis and opening prospects for innovative precision molecular strategies aimed at preventing and treating atherosclerotic cardiovascular disease.

4.
J Am Heart Assoc ; 13(7): e034032, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38533990

BACKGROUND: Intracerebral hemorrhage (ICH) is a major cause of maternal morbidity, but its pathophysiology is poorly characterized. We investigated characteristics of pregnancy-associated ICH (P-ICH), compared with ICH in similar aged nonpregnant adults of both sexes. METHODS AND RESULTS: We performed a retrospective analysis of 134 adults aged 18 to 44 years admitted to our center with nontraumatic ICH from January 1, 2012, to December 31, 2021. We compared ICH characteristics among 3 groups: those with P-ICH (pregnant or within 12 months of end of pregnancy); nonpregnant women; and men. We categorized ICH pathogenesis according to a modified scheme, SMASH-UP (structural, medications, amyloid angiopathy, systemic, hypertension, undetermined, posterior reversible encephalopathy syndrome/reversible cerebral vasoconstriction syndrome), and calculated odds ratios and 95% CIs for primary (spontaneous small-vessel) ICH versus secondary ICH (structural lesions or coagulopathy related), using nonpregnant women as the reference. We also compared specific ICH pathogenesis by SMASH-UP criteria and functional outcomes between groups. Of 134 young adults with nontraumatic ICH, 25 (19%) had P-ICH, of which 60% occurred postpartum. Those with P-ICH had higher odds of primary ICH compared with nonpregnant women (adjusted odds ratio, 4.5 [95% CI, 1.4-14.7]). The odds of primary ICH did not differ between men and nonpregnant women. SMASH-UP pathogenesis for ICH differed significantly between groups (P<0.001). While the in-hospital mortality rate was lowest in the P-ICH group (4%) compared with nonpregnant women (13%) and men (24%), 1 in 4 patients with P-ICH were bedbound and dependent at the time of discharge. CONCLUSIONS: In our cohort of young adults with ICH, 1 in 5 was pregnancy related. P-ICH differed in pathogenesis compared with non-pregnancy-related ICH in young adults, suggesting unique pathophysiology.


Hypertension , Posterior Leukoencephalopathy Syndrome , Pregnancy Complications , Male , Pregnancy , Humans , Female , Young Adult , Retrospective Studies , Posterior Leukoencephalopathy Syndrome/complications , Cerebral Hemorrhage/etiology , Hypertension/complications
5.
J Stroke Cerebrovasc Dis ; 33(5): 107678, 2024 May.
Article En | MEDLINE | ID: mdl-38479493

BACKGROUND AND PURPOSE: Non-O blood types are known to be associated with thromboembolic complications (TECs) in population-based studies. TECs are known drivers of morbidity and mortality in intracerebral hemorrhage (ICH) patients, yet the relationships of blood type on TECs in this patient population are unknown. We sought to explore the relationships between ABO blood type and TECs in ICH patients. METHODS: Consecutive adult ICH patients enrolled into a prospective observational cohort study with available ABO blood type data were analyzed. Patients with cancer history, prior thromboembolism, and baseline laboratory evidence of coagulopathy were excluded. The primary exposure variable was blood type (non-O versus O). The primary outcome was composite TEC, defined as pulmonary embolism, deep venous thrombosis, ischemic stroke or myocardial infarction, during the hospital stay. Relationships between blood type, TECs and clinical outcomes were separately assessed using logistic regression models after adjusting for sex, ethnicity and ICH score. RESULTS: Of 301 ICH patients included for analysis, 44% were non-O blood type. Non-O blood type was associated with higher admission GCS and lower ICH score on baseline comparisons. We identified TECs in 11.6% of our overall patient cohort. . Although TECs were identified in 9.9% of non-O blood type patients compared to 13.0% in O blood type patients, we did not identify a significant relationship of non-O blood type with TECs (adjusted OR=0.776, 95%CI: 0.348-1.733, p=0.537). The prevalence of specific TECs were also comparable in unadjusted and adjusted analyses between the two cohorts. In additional analyses, we identified that TECs were associated with poor 90-day mRS (adjusted OR=3.452, 95% CI: 1.001-11.903, p=0.050). We did not identify relationships between ABO blood type and poor 90-day mRS (adjusted OR=0.994, 95% CI:0.465-2.128, p=0.988). CONCLUSIONS: We identified that TECs were associated with worse ICH outcomes. However, we did not identify relationships in ABO blood type and TECs. Further work is required to assess best diagnostic and prophylactic and treatment strategies for TECs to improve ICH outcomes.


Pulmonary Embolism , Thromboembolism , Adult , Humans , Prospective Studies , Cerebral Hemorrhage/diagnosis , Thromboembolism/diagnosis , Thromboembolism/epidemiology , Thromboembolism/etiology , Logistic Models , Pulmonary Embolism/complications
6.
Cells ; 13(2)2024 01 10.
Article En | MEDLINE | ID: mdl-38247821

In the mammalian isocortex, CD44, a cell surface receptor for extracellular matrix molecules, is present in pial-based and fibrous astrocytes of white matter but not in protoplasmic astrocytes. In the hominid isocortex, CD44+ astrocytes comprise the subpial "interlaminar" astrocytes, sending long processes into the cortex. The hippocampus also contains similar astrocytes. We have examined all levels of the human central nervous system and found CD44+ astrocytes in every region. Astrocytes in white matter and astrocytes that interact with large blood vessels but not with capillaries in gray matter are CD44+, the latter extending long processes into the parenchyma. Motor neurons in the brainstem and spinal cord, such as oculomotor, facial, hypoglossal, and in the anterior horn of the spinal cord, are surrounded by CD44+ processes, contrasting with neurons in the cortex, basal ganglia, and thalamus. We found CD44+ processes that intercalate between ependymal cells to reach the ventricle. We also found CD44+ astrocytes in the molecular layer of the cerebellar cortex. Protoplasmic astrocytes, which do not normally contain CD44, acquire it in pathologies like hypoxia and seizures. The pervasive and inducible expression of CD44 in astrocytes is a novel finding that lays the foundations for functional studies into the significance of CD44 in health and disease.


Hyaluronan Receptors , Hypoxia , Seizures , Animals , Humans , Astrocytes , Hyaluronan Receptors/metabolism , Hypoxia/metabolism , Neocortex , Seizures/metabolism , White Matter
7.
J Cereb Blood Flow Metab ; 44(2): 192-208, 2024 02.
Article En | MEDLINE | ID: mdl-38016953

This systematic review, meta-analysis, and novel time course analysis examines microvascular failure in the treatment of acute ischemic stroke (AIS) patients undergoing endovascular therapy (EVT) and/or thrombolytic administration for stroke management. A systematic review and meta-analysis following PRIMSA-2020 guidelines was conducted along with a novel curve-of-best fit analysis to elucidate the time-course of microvascular failure. Scopus and PubMed were searched using relevant keywords to identify studies that examine recanalization and reperfusion assessment of AIS patients following large vessel occlusion. Meta-analysis was conducted using a random-effects model. Curve-of-best-fit analysis of microvascular failure rate was performed with a negative exponential model. Twenty-seven studies with 1151 patients were included. Fourteen studies evaluated patients within a standard stroke onset-to-treatment time window (≤6 hours after last known normal) and thirteen studies had an extended time window (>6 hours). Our analysis yields a 22% event rate of microvascular failure following successful recanalization (95% CI: 16-30%). A negative exponential curve modeled a microvascular failure rate asymptote of 28.5% for standard time window studies, with no convergence of the model for extended time window studies. Progressive microvascular failure is a phenomenon that is increasingly identified in clinical studies of AIS patients undergoing revascularization treatment.


Brain Ischemia , Endovascular Procedures , Ischemic Stroke , Stroke , Humans , Brain Ischemia/surgery , Brain Ischemia/drug therapy , Ischemic Stroke/drug therapy , Thrombolytic Therapy , Treatment Outcome , Endovascular Procedures/adverse effects , Stroke/surgery , Stroke/drug therapy , Thrombectomy/adverse effects
8.
Neurosurg Rev ; 46(1): 208, 2023 Aug 23.
Article En | MEDLINE | ID: mdl-37612544

Spontaneous cerebellar hemorrhage (scICH) is a subset of intracerebral hemorrhage accounting for 5-10% of all cases. Despite potential advantages, minimally invasive surgical evacuation of scICH may be an underutilized strategy when compared to unilateral or bilateral large suboccipital craniectomy or craniotomy, with or without duraplasty. We performed a retrospective single-center cohort study and a systematic literature review. Radiographic and clinical data were recorded and analyzed. Five consecutive patients with minimally invasive surgical evacuation of scICH were identified. Average hematoma size was 16.4 ± 3.0 cm3. Mean Glasgow coma score (GCS) prior to surgery was 11.6 ± 3.0 with improvement to 14.6 ± 0.4 postoperatively. Mean hematoma evacuation was 92.6 ± 0.6% as confirmed by postoperative computed tomography (CT) imaging. All patients achieved a modified Rankin Scale (mRS) score of 0 or 1 with an average follow-up time of 31 ± 22 months. Mean length of hospital stay was 8.8 ± 3.0 days. No patients experienced significant complications or required reoperation. Systematic review revealed similar results for minimally invasive evacuation of scICH when reporting disaggregated outcomes. A review of recent studies utilizing large unilateral or bilateral suboccipital craniectomy or craniotomy, with or without duraplasty, revealed higher morbidity and mortality rates than minimally invasive surgical evacuation of scICH. Minimally invasive evacuation of scICH is safe and effective. Near complete evacuation of hematoma can be achieved with lower morbidity and mortality than large suboccipital craniectomy or craniotomy. A multi-center, prospective, and rigorous trial comparing the two strategies for evacuation of scICH is warranted.


Cerebral Hemorrhage , Hematoma , Humans , Cohort Studies , Retrospective Studies , Systematic Reviews as Topic
9.
Res Sq ; 2023 Jul 27.
Article En | MEDLINE | ID: mdl-37546936

Background and Purpose: Non-O blood types are known to be associated with thromboembolic complications (TECs) in population-based studies. TECs are known drivers of morbidity and mortality in intracerebral hemorrhage (ICH) patients, yet the relationships of blood type on TECs in this patient population are unknown. We sought to explore the relationships between ABO blood type and TECs in ICH patients. Methods: Consecutive adult ICH patients enrolled into a prospective observational cohort study with available ABO blood type data were analyzed. Patients with cancer history, prior thromboembolism, and baseline laboratory evidence of coagulopathy were excluded. The primary exposure variable was blood type (non-O versus O). The primary outcome was composite TEC, defined as pulmonary embolism, deep venous thrombosis, ischemic stroke or myocardial infarction, during the hospital stay. Relationships between blood type, TECs and clinical outcomes were separately assessed using logistic regression models after adjusting for sex, ethnicity and ICH score. Results: Of 301 ICH patients included for analysis, 44% were non-O blood type. Non-O blood type was associated with higher admission GCS and lower ICH score on baseline comparisons. We identified TECs in 11.6% of our overall patient cohort. Although TECs were identified in 9.9% of non-O blood type patients compared to 13.0% in O blood type patients, we did not identify a significant relationship of non-O blood type with TECs (adjusted OR = 0.776, 95%CI: 0.348-1.733, p = 0.537). The prevalence of specific TECs were also comparable in unadjusted and adjusted analyses between the two cohorts. In additional analyses, we identified that TECs were associated with poor 90-day mRS (adjusted OR = 3.452, 95% CI: 1.001-11.903, p = 0.050). We did not identify relationships between ABO blood type and poor 90-day mRS (adjusted OR = 0.994, 95% CI:0.465-2.128, p = 0.988). Conclusions: We identified that TECs were associated with worse ICH outcomes. However, we did not identify relationships in ABO blood type and TECs. Further work is required to assess best diagnostic and prophylactic and treatment strategies for TECs to improve ICH outcomes.

10.
Stroke ; 54(9): 2472-2480, 2023 09.
Article En | MEDLINE | ID: mdl-37534511

Acute ischemic stroke remains the primary cause of disability worldwide. For patients with large vessel occlusions, intravenous thrombolysis followed by mechanical thrombectomy remains the standard of care. Revascularization of the large vessel is typically successful. However, despite reopening of the occluded vessel, many patients fail to return to independence. Functional failure, despite macrovascular recanalization, is often referred to as the no-reflow phenomenon. Even with an extensive characterization of reperfusion in animal models, numerous mechanisms may explain no-reflow. Further, uniform measurements of this microvascular dysfunction and prognostic markers associated with no-reflow are lacking. In this review, we highlight a number of mechanisms that may explain no-reflow, characterize current multimodal measurements, and assess its molecular markers.


Brain Ischemia , Ischemic Stroke , Stroke , Humans , Stroke/surgery , Ischemic Stroke/surgery , Brain Ischemia/surgery , Thrombectomy , Treatment Outcome
11.
Expert Rev Neurother ; 23(9): 791-801, 2023.
Article En | MEDLINE | ID: mdl-37540092

INTRODUCTION: Stroke is a significant cause of death, and the leading cause of severe long-term disability for individuals over 80 (the very old), yet few studies of such risk factors for ischemic stroke, or the known mitigation techniques, in this population, and the evidence base regarding risk modification strategies in this susceptible population can be inconsistent and incomplete. This article examines current guidelines and evidence regarding medical management, lifestyle changes, and psychosocial interactions that can contribute to the primary and secondary prevention of ischemic stroke in the very old. AREAS COVERED: The authors conducted a literature search for ischemic stroke prevention and risk assessment in the elderly via PubMed. Furthermore, they describe current strategies for monitoring risk and preventing ischemic stroke in the elderly population. EXPERT OPINION: Ischemic stroke poses a significant health risk to the elderly, with prevention relying on managing modifiable risk factors such as hypertension, atrial fibrillation, diabetes, and high cholesterol, as well as promoting healthy lifestyle choices like quitting smoking, regular physical activity and a heart-healthy diet. Healthcare providers must adopt a multifaceted approach, addressing individual and population-level factors while remaining vigilant in monitoring and managing risk factors to reduce the incidence and impact of stroke in older adults.


Atrial Fibrillation , Ischemic Stroke , Stroke , Humans , Aged , Stroke/prevention & control , Stroke/epidemiology , Risk Factors , Smoking/adverse effects , Risk Assessment , Atrial Fibrillation/complications , Atrial Fibrillation/epidemiology
12.
Brain ; 146(11): 4645-4658, 2023 11 02.
Article En | MEDLINE | ID: mdl-37574216

In unconscious appearing patients with acute brain injury, wilful brain activation to motor commands without behavioural signs of command following, known as cognitive motor dissociation (CMD), is associated with functional recovery. CMD can be detected by applying machine learning to EEG recorded during motor command presentation in behaviourally unresponsive patients. Identifying patients with CMD carries clinical implications for patient interactions, communication with families, and guidance of therapeutic decisions but underlying mechanisms of CMD remain unknown. By analysing structural lesion patterns and network level dysfunction we tested the hypothesis that, in cases with preserved arousal and command comprehension, a failure to integrate comprehended motor commands with motor outputs underlies CMD. Manual segmentation of T2-fluid attenuated inversion recovery and diffusion weighted imaging sequences quantifying structural injury was performed in consecutive unresponsive patients with acute brain injury (n = 107) who underwent EEG-based CMD assessments and MRI. Lesion pattern analysis was applied to identify lesion patterns common among patients with (n = 21) and without CMD (n = 86). Thalamocortical and cortico-cortical network connectivity were assessed applying ABCD classification of power spectral density plots and weighted pairwise phase consistency (WPPC) to resting EEG, respectively. Two distinct structural lesion patterns were identified on MRI for CMD and three for non-CMD patients. In non-CMD patients, injury to brainstem arousal pathways including the midbrain were seen, while no CMD patients had midbrain lesions. A group of non-CMD patients was identified with injury to the left thalamus, implicating possible language comprehension difficulties. Shared lesion patterns of globus pallidus and putamen were seen for a group of CMD patients, which have been implicated as part of the anterior forebrain mesocircuit in patients with reversible disorders of consciousness. Thalamocortical network dysfunction was less common in CMD patients [ABCD-index 2.3 (interquartile range, IQR 2.1-3.0) versus 1.4 (IQR 1.0-2.0), P < 0.0001; presence of D 36% versus 3%, P = 0.0006], but WPPC was not different. Bilateral cortical lesions were seen in patients with and without CMD. Thalamocortical disruption did not differ for those with CMD, but long-range WPPC was decreased in 1-4 Hz [odds ratio (OR) 0.8; 95% confidence interval (CI) 0.7-0.9] and increased in 14-30 Hz frequency ranges (OR 1.2; 95% CI 1.0-1.5). These structural and functional data implicate a failure of motor command integration at the anterior forebrain mesocircuit level with preserved thalamocortical network function for CMD patients with subcortical lesions. Amongst patients with bilateral cortical lesions preserved cortico-cortical network function is associated with CMD detection. These data may allow screening for CMD based on widely available structural MRI and resting EEG.


Brain Injuries , Humans , Brain Injuries/complications , Magnetic Resonance Imaging , Prosencephalon , Diffusion Magnetic Resonance Imaging , Consciousness
13.
Physiol Meas ; 44(6)2023 07 04.
Article En | MEDLINE | ID: mdl-37327793

Objective. The objective of this study is to develop and validate a method for automatically identifying segments of intracranial pressure (ICP) waveform data from external ventricular drainage (EVD) recordings during intermittent drainage and closure.Methods. The proposed method uses time-frequency analysis through wavelets to distinguish periods of ICP waveform in EVD data. By comparing the frequency compositions of the ICP signals (when the EVD system is clamped) and the artifacts (when the system is open), the algorithm can detect short, uninterrupted segments of ICP waveform from the longer periods of non-measurement data. The method involves applying a wavelet transform, calculating the absolute power in a specific range, using Otsu thresholding to automatically identify a threshold, and performing a morphological operation to remove small segments. Two investigators manually graded the same randomly selected one-hour segments of the resulting processed data. Performance metrics were calculated as a percentage.Results. The study analyzed data from 229 patients who had EVD placed following subarachnoid hemorrhage between June 2006 and December 2012. Of these, 155 (67.7%) were female and 62 (27%) developed delayed cerebral ischemia. A total of 45 150 h of data were segmented. 2044 one-hour segments were randomly selected and evaluated by two investigators (MM and DN). Of those, the evaluators agreed on the classification of 1556 one-hour segments. The algorithm was able to correctly identify 86% (1338 h) of ICP waveform data. 8.2% (128 h) of the time the algorithm either partially or fully failed to segment the ICP waveform. 5.4% (84 h) of data, artifacts were mistakenly identified as ICP waveforms (false positives).Conclusion. The proposed algorithm automates the identification of valid ICP waveform segments of waveform in EVD data and thus enables the inclusion in real-time data analysis for decision support. It also standardizes and makes research data management more efficient.


Subarachnoid Hemorrhage , Female , Humans , Male , Constriction , Intracranial Pressure , Wavelet Analysis
14.
Front Cell Neurosci ; 17: 1123365, 2023.
Article En | MEDLINE | ID: mdl-37383840

Ischemic stroke is a leading cause of death and disability worldwide. A serious risk of acute ischemic stroke (AIS) arises after the stroke event, due to inflammation and edema formation. Inflammation and edema in the brain are mediated by bradykinin, the formation of which is dependent upon a multi-ligand receptor protein called gC1qR. There are currently no preventive treatments for the secondary damage of AIS produced by inflammation and edema. This review aims to summarize recent research regarding the role of gC1qR in bradykinin formation, its role in inflammation and edema following ischemic injury, and potential therapeutic approaches to preventing post-stroke inflammation and edema formation.

15.
J Am Heart Assoc ; 12(11): e028816, 2023 06 06.
Article En | MEDLINE | ID: mdl-37232240

Background Anemia is associated with poor intracerebral hemorrhage (ICH) outcomes, yet the relationship of red blood cell (RBC) transfusions to ICH complications and functional outcomes remains unclear. We investigated the impact of RBC transfusion on hospital thromboembolic and infectious complications and outcomes in patients with ICH. Methods and Results Consecutive patients with spontaneous ICH enrolled in a single-center, prospective cohort study from 2009 to 2018 were assessed. Primary analyses assessed relationships of RBC transfusions on incident thromboembolic and infectious complications occurring after the transfusion. Secondary analyses assessed relationships of RBC transfusions with mortality and poor discharge modified Rankin Scale score 4 to 6. Multivariable logistic regression models adjusted for baseline demographics and medical disease severity (Acute Physiology and Chronic Health Evaluation II), and ICH severity (ICH score).Of 587 patients with ICH analyzed, 88 (15%) received at least one RBC transfusion. Patients receiving RBC transfusions had worse medical and ICH severity. Though patients receiving RBC transfusions had more complications at any point during the hospitalization (64.8% versus 35.9%), we found no association between RBC transfusion and incident complications in our regression models (adjusted odds ratio [aOR], 0.71 [95% CI, 0.42-1.20]). After adjusting for disease severity and other relevant covariates, we found no significant association between RBC transfusion and mortality (aOR, 0.87 [95% CI, 0.45-1.66]) or poor discharge modified Rankin Scale score (aOR, 2.45 [95% CI, 0.80-7.61]). Conclusions In our cohort with ICH, RBC transfusions were expectedly given to patients with higher medical and ICH severity. Taking disease severity and timing of transfusions into account, RBC transfusion was not associated with incident hospital complications or poor clinical ICH outcomes.


Anemia , Erythrocyte Transfusion , Humans , Erythrocyte Transfusion/adverse effects , Prospective Studies , Cerebral Hemorrhage/epidemiology , Cerebral Hemorrhage/therapy , Cerebral Hemorrhage/etiology , Anemia/epidemiology , Anemia/therapy , Blood Transfusion
16.
Ann Neurol ; 94(1): 196-202, 2023 07.
Article En | MEDLINE | ID: mdl-37189299

Increased intracranial pressure (ICP) causes disability and mortality in the neurointensive care population. Current methods for monitoring ICP are invasive. We designed a deep learning framework using a domain adversarial neural network to estimate noninvasive ICP, from blood pressure, electrocardiogram, and cerebral blood flow velocity. Our model had a mean of median absolute error of 3.88 ± 3.26 mmHg for the domain adversarial neural network, and 3.94 ± 1.71 mmHg for the domain adversarial transformers. Compared with nonlinear approaches, such as support vector regression, this was 26.7% and 25.7% lower. Our proposed framework provides more accurate noninvasive ICP estimates than currently available. ANN NEUROL 2023;94:196-202.


Deep Learning , Intracranial Hypertension , Humans , Intracranial Pressure/physiology , Cerebrovascular Circulation/physiology , Blood Pressure/physiology , Intracranial Hypertension/etiology , Ultrasonography, Doppler, Transcranial/adverse effects
17.
bioRxiv ; 2023 Mar 07.
Article En | MEDLINE | ID: mdl-36945644

Atherosclerosis, the leading cause of cardiovascular disease, is a chronic inflammatory disease involving pathological activation of multiple cell types, such as immunocytes (e.g., macrophage, T cells), smooth muscle cells (SMCs), and endothelial cells. Multiple lines of evidence have suggested that SMC "phenotypic switching" plays a central role in atherosclerosis development and complications. Yet, SMC roles and mechanisms underlying the disease pathogenesis are poorly understood. Here, employing SMC lineage tracing mice, comprehensive molecular, cellular, histological, and computational profiling, coupled to genetic and pharmacological studies, we reveal that atherosclerosis, in terms of SMC behaviors, share extensive commonalities with tumors. SMC-derived cells in the disease show multiple characteristics of tumor cell biology, including genomic instability, replicative immortality, malignant proliferation, resistance to cell death, invasiveness, and activation of comprehensive cancer-associated gene regulatory networks. SMC-specific expression of oncogenic KrasG12D accelerates SMC phenotypic switching and exacerbates atherosclerosis. Moreover, we present a proof of concept showing that niraparib, an anti-cancer drug targeting DNA damage repair, attenuates atherosclerosis progression and induces regression of lesions in advanced disease in mouse models. Our work provides systematic evidence that atherosclerosis is a tumor-like disease, deepening the understanding of its pathogenesis and opening prospects for novel precision molecular strategies to prevent and treat atherosclerotic cardiovascular disease.

18.
Crit Care Med ; 51(2): 267-278, 2023 02 01.
Article En | MEDLINE | ID: mdl-36661453

OBJECTIVES: Low hemoglobin concentration impairs clinical hemostasis across several diseases. It is unclear whether hemoglobin impacts laboratory functional coagulation assessments. We evaluated the relationship of hemoglobin concentration on viscoelastic hemostatic assays in intracerebral hemorrhage (ICH) and perioperative patients admitted to an ICU. DESIGN: Observational cohort study and separate in vitro laboratory study. SETTING: Multicenter tertiary referral ICUs. PATIENTS: Two acute ICH cohorts receiving distinct testing modalities: rotational thromboelastometry (ROTEM) and thromboelastography (TEG), and a third surgical ICU cohort receiving ROTEM were evaluated to assess the generalizability of findings across disease processes and testing platforms. A separate in vitro ROTEM laboratory study was performed utilizing ICH patient blood samples. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Relationships between baseline hemoglobin and ROTEM/TEG results were separately assessed across patient cohorts using Spearman correlations and linear regression models. A separate in vitro study assessed ROTEM tracing changes after serial hemoglobin modifications from ICH patient blood samples. In both our ROTEM (n = 34) and TEG (n = 239) ICH cohorts, hemoglobin concentrations directly correlated with coagulation kinetics (ROTEM r: 0.46; p = 0.01; TEG r: 0.49; p < 0.0001) and inversely correlated with clot strength (ROTEM r: -0.52, p = 0.002; TEG r: -0.40, p < 0.0001). Similar relationships were identified in perioperative ICU admitted patients (n = 121). We continued to identify these relationships in linear regression models. When manipulating ICH patient blood samples to achieve lower hemoglobin concentrations in vitro, we similarly identified that lower hemoglobin concentrations resulted in progressively faster coagulation kinetics and greater clot strength on ROTEM tracings. CONCLUSIONS: Lower hemoglobin concentrations have a consistent, measurable impact on ROTEM/TEG testing in ICU admitted patients, which appear to be artifactual. It is possible that patients with low hemoglobin may appear to have normal viscoelastic parameters when, in fact, they have a mild hypocoagulable state. Further work is required to determine if these tests should be corrected for a patient's hemoglobin concentration.


Blood Coagulation Disorders , Cerebral Hemorrhage , Hemoglobins , Hemostasis , Hemostatics , Humans , Blood Coagulation Disorders/diagnosis , Cerebral Hemorrhage/diagnosis , Cerebral Hemorrhage/therapy , Hemoglobins/analysis , Thrombelastography/methods , Intensive Care Units
19.
Stroke ; 54(1): 189-197, 2023 01.
Article En | MEDLINE | ID: mdl-36314124

BACKGROUND: Targeting a cerebral perfusion pressure optimal for cerebral autoregulation (CPPopt) has been gaining more attention to prevent secondary damage after acute neurological injury. Brain tissue oxygenation (PbtO2) can identify insufficient cerebral blood flow and secondary brain injury. Defining the relationship between CPPopt and PbtO2 after aneurysmal subarachnoid hemorrhage may result in (1) mechanistic insights into whether and how CPPopt-based strategies might be beneficial and (2) establishing support for the use of PbtO2 as an adjunctive monitor for adequate or optimal local perfusion. METHODS: We performed a retrospective analysis of a prospectively collected 2-center dataset of patients with aneurysmal subarachnoid hemorrhage with or without later diagnosis of delayed cerebral ischemia (DCI). CPPopt was calculated as the cerebral perfusion pressure (CPP) value corresponding to the lowest pressure reactivity index (moving correlation coefficient of mean arterial and intracranial pressure). The relationship of (hourly) deltaCPP (CPP-CPPopt) and PbtO2 was investigated using natural spline regression analysis. Data after DCI diagnosis were excluded. Brain tissue hypoxia was defined as PbtO2 <20 mmHg. RESULTS: One hundred thirty-one patients were included with a median of 44.0 (interquartile range, 20.8-78.3) hourly CPPopt/PbtO2 datapoints. The regression plot revealed a nonlinear relationship between PbtO2 and deltaCPP (P<0.001) with PbtO2 decrease with deltaCPP <0 mmHg and stable PbtO2 with deltaCPP ≥0mmHg, although there was substantial individual variation. Brain tissue hypoxia (34.6% of all measurements) was more frequent with deltaCPP <0 mmHg. These dynamics were similar in patients with or without DCI. CONCLUSIONS: We found a nonlinear relationship between PbtO2 and deviation of patients' CPP from CPPopt in aneurysmal subarachnoid hemorrhage patients in the pre-DCI period. CPP values below calculated CPPopt were associated with lower PbtO2. Nevertheless, the nature of PbtO2 measurements is complex, and the variability is high. Combined multimodality monitoring with CPP/CPPopt and PbtO2 should be recommended to redefine individual pressure targets (CPP/CPPopt) and retain the option to detect local perfusion deficits during DCI (PbtO2), which cannot be fulfilled by both measurements interchangeably.


Brain Injuries, Traumatic , Brain Ischemia , Subarachnoid Hemorrhage , Humans , Retrospective Studies , Oxygen , Brain/diagnostic imaging , Cerebral Infarction , Intracranial Pressure , Cerebrovascular Circulation/physiology , Hypoxia , Brain Injuries, Traumatic/diagnosis
...