Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
2.
Nat Chem Biol ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271954

RESUMEN

Steroidal glycoalkaloids (SGAs) are specialized metabolites produced by hundreds of Solanum species including food crops, such as tomato, potato and eggplant. Unlike true alkaloids, nitrogen is introduced at a late stage of SGA biosynthesis through an unknown transamination reaction. Here, we reveal the mechanism by which GLYCOALKALOID METABOLISM12 (GAME12) directs the biosynthesis of nitrogen-containing steroidal alkaloid aglycone in Solanum. We report that GAME12, a neofunctionalized γ-aminobutyric acid (GABA) transaminase, undergoes changes in both active site specificity and subcellular localization to switch from its renown and generic activity in core metabolism to function in a specialized metabolic pathway. Moreover, overexpression of GAME12 alone in engineered S. nigrum leaves is sufficient for de novo production of nitrogen-containing SGAs. Our results highlight how hijacking a core metabolism GABA shunt enzyme is crucial in numerous Solanum species for incorporating a nitrogen to a steroidal-specialized metabolite backbone and form defensive alkaloids.

3.
New Phytol ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285533

RESUMEN

Plant-specialized metabolism is largely driven by the oxidative tailoring of key chemical scaffolds catalyzed by cytochrome P450 (CYP450s) enzymes. Monoterpene indole alkaloids (MIAs) tabersonine and pseudo-tabersonine, found in the medicinal plant Tabernanthe iboga (commonly known as iboga), are tailored with oxidations, and the enzymes involved remain unknown. Here, we developed a streamlined screening strategy to test the activity of T. iboga CYP450s in Nicotiana benthamiana. Using multigene constructs encoding the biosynthesis of tabersonine and pseudo-tabersonine scaffolds, we aimed to uncover the CYP450s responsible for oxidative transformations in these scaffolds. Our approach identified two T. iboga cytochrome P450 enzymes: pachysiphine synthase (PS) and 16-hydroxy-tabersonine synthase (T16H). These enzymes catalyze an epoxidation and site-specific hydroxylation of tabersonine to produce pachysiphine and 16-OH-tabersonine, respectively. This work provides new insights into the biosynthetic pathways of MIAs and underscores the utility of N. benthamiana and Catharanthus roseus as platforms for the functional characterization of plant enzymes.

4.
J Am Chem Soc ; 146(34): 23891-23900, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39138868

RESUMEN

Plants produce an extraordinary array of natural products (specialized metabolites). Notably, these structurally complex molecules are not evenly distributed throughout plant tissues but are instead synthesized and stored in specific cell types. Elucidating both the biosynthesis and function of natural products would be greatly facilitated by tracking the location of these metabolites at the cell-level resolution. However, detection, identification, and quantification of metabolites in single cells, particularly from plants, have remained challenging. Here, we show that we can definitively identify and quantify the concentrations of 16 molecules from four classes of natural products in individual cells of leaf, root, and petal of the medicinal plant Catharanthus roseus using a plate-based single-cell mass spectrometry method. We show that identical natural products show substantially different patterns of cell-type localization in different tissues. Moreover, we show that natural products are often found in a wide range of concentrations across a population of cells, with some natural products at concentrations of over 100 mM per cell. This single-cell mass spectrometry method provides a highly resolved picture of plant natural product biosynthesis partitioning at a cell-specific resolution.


Asunto(s)
Productos Biológicos , Catharanthus , Espectrometría de Masas , Análisis de la Célula Individual , Productos Biológicos/metabolismo , Productos Biológicos/química , Productos Biológicos/análisis , Catharanthus/metabolismo , Catharanthus/química , Análisis de la Célula Individual/métodos , Espectrometría de Masas/métodos , Hojas de la Planta/metabolismo , Hojas de la Planta/química , Raíces de Plantas/metabolismo , Raíces de Plantas/química
5.
Plant Physiol ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052981

RESUMEN

Pentacyclic triterpenoids, recognized for their natural bioactivity, display complex spatiotemporal accumulation patterns within the ecological model plant Nicotiana attenuata. Despite their ecological importance, the underlying biosynthetic enzymes and functional attributes of triterpenoid synthesis in N. attenuata remain unexplored. Here, we show that three cytochrome P450 monooxygenases (NaCYP716A419, NaCYP716C87, and NaCYP716E107) from N. attenuata oxidize the pentacyclic triterpene skeleton, as evidenced by heterologous expression in Nicotiana benthamiana. NaCYP716A419 catalyzed a consecutive three-step oxidation reaction at the C28 position of ß-amyrin/lupeol/lupanediol, yielding the corresponding alcohol, aldehyde, and carboxylic acid. NaCYP716C87 hydroxylated the C2α position of ß-amyrin/lupeol/lupanediol/erythrodiol/oleanolic acid/betulinic acid, while NaCYP716E107 hydroxylated the C6ß position of ß-amyrin/oleanolic acid. The genes encoding these three CYP716 enzymes are highly expressed in flowers and respond to induction by ABA, MeJA, SA, GA3, and abiotic stress treatments. Using VIGS technology, we revealed that silencing of NaCYP716A419 affects the growth and reproduction of N. attenuata, suggesting the ecological significance of these specialized metabolite biosynthetic steps.

6.
Cell ; 187(14): 3502-3503, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38996484

RESUMEN

Dolichol is a lipid that is involved in protein glycosylation, a process that is essential for all eukaryotic life. In this issue of Cell, Wilson and coworkers1 report how a rare human genetic disorder led to the discovery of dolichol biosynthesis.


Asunto(s)
Dolicoles , Humanos , Dolicoles/metabolismo , Dolicoles/biosíntesis , Glicosilación
7.
Mol Plant ; 17(8): 1236-1254, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38937971

RESUMEN

Steroidal glycoalkaloids (SGAs) are specialized metabolites produced by hundreds of Solanum species, including important vegetable crops such as tomato, potato, and eggplant. Although it has been known that SGAs play important roles in defense in plants and "anti-nutritional" effects (e.g., toxicity and bitterness) to humans, many of these molecules have documented anti-cancer, anti-microbial, anti-inflammatory, anti-viral, and anti-pyretic activities. Among these, α-solasonine and α-solamargine isolated from black nightshade (Solanum nigrum) are reported to have potent anti-tumor, anti-proliferative, and anti-inflammatory activities. Notably, α-solasonine and α-solamargine, along with the core steroidal aglycone solasodine, are the most widespread SGAs produced among the Solanum plants. However, it is still unknown how plants synthesize these bioactive steroidal molecules. Through comparative metabolomic-transcriptome-guided approach, biosynthetic logic, combinatorial expression in Nicotiana benthamiana, and functional recombinant enzyme assays, here we report the discovery of 12 enzymes from S. nigrum that converts the starting cholesterol precursor to solasodine aglycone, and the downstream α-solasonine, α-solamargine, and malonyl-solamargine SGA products. We further identified six enzymes from cultivated eggplant that catalyze the production of α-solasonine, α-solamargine, and malonyl-solamargine SGAs from solasodine aglycone via glycosylation and atypical malonylation decorations. Our work provides the gene tool box and platform for engineering the production of high-value, steroidal bioactive molecules in heterologous hosts using synthetic biology.


Asunto(s)
Alcaloides , Solanum , Solanum/metabolismo , Alcaloides/biosíntesis , Alcaloides/química , Alcaloides/metabolismo , Alcaloides Solanáceos/biosíntesis , Alcaloides Solanáceos/metabolismo , Alcaloides Solanáceos/química , Esteroides/biosíntesis , Esteroides/metabolismo , Nicotiana/metabolismo , Nicotiana/genética , Solanum nigrum/metabolismo , Solanum nigrum/química
8.
JCO Glob Oncol ; 10: e2300420, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38815192

RESUMEN

PURPOSE: Functional problems such as incontinence and sexual dysfunction after radical prostatectomy (RP) are important outcomes to evaluate surgical quality in prostate cancer (PC) care. Differences in survival after RP between countries are known, but differences in functional outcomes after RP between providers from different countries are not well described. METHODS: Data from a multinational database of patients with PC (nonmetastatic, treated by RP) who answered the EPIC-26 questionnaire at baseline (before RP, T0) and 1 year after RP (T1) were used, linking survey data to clinical information. Casemix-adjusted incontinence and sexual function scores (T1) were calculated for each country and provider on the basis of regression models and then compared using minimally important differences (MIDs). RESULTS: A total of 21,922 patients treated by 151 providers from 10 countries were included. For the EPIC-26 incontinence domain, the median adjusted T1 score of countries was 76, with one country performing more than one MID (for incontinence: 6) worse than the median. Eighteen percent of the variance (R2) of incontinence scores was explained by the country of the providers. The median adjusted T1 score of sexual function was 33 with no country performing perceivably worse than the median (more than one MID worse), and 34% (R2) of the variance of the providers' scores could be explained by country. CONCLUSION: To our knowledge, this is the first comparison of functional outcomes 1 year after surgical treatment of patients with PC between different countries. Country is a relevant predictor for providers' incontinence and sexual function scores. Although the results are limited because of small samples from some countries, they should be used to enhance cross-country initiatives on quality improvement in PC care.


Asunto(s)
Prostatectomía , Neoplasias de la Próstata , Calidad de la Atención de Salud , Sistema de Registros , Incontinencia Urinaria , Humanos , Masculino , Neoplasias de la Próstata/cirugía , Prostatectomía/efectos adversos , Sistema de Registros/estadística & datos numéricos , Anciano , Persona de Mediana Edad , Incontinencia Urinaria/epidemiología , Calidad de la Atención de Salud/normas , Calidad de la Atención de Salud/estadística & datos numéricos , Encuestas y Cuestionarios , Calidad de Vida
9.
New Phytol ; 242(3): 1156-1171, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513692

RESUMEN

In Catharanthus roseus, monoterpenoid indole alkaloids (MIAs) are produced through the cooperation of four cell types, with final products accumulating in specialized cells known as idioblasts and laticifers. To explore the relationship between cellular differentiation and cell type-specific MIA metabolism, we analyzed the expression of MIA biosynthesis in germinating seeds. Embryos from immature and mature seeds were observed via stereomicroscopy, fluorescence microscopy, and electron microscopy. Time-series MIA and iridoid quantification, along with transcriptome analysis, were conducted to determine the initiation of MIA biosynthesis. In addition, the localization of MIAs was examined using alkaloid staining and imaging mass spectrometry (IMS). Laticifers were present in embryos before seed maturation. MIA biosynthesis commenced 12 h after germination. MIAs accumulated in laticifers of embryos following seed germination, and MIA metabolism is induced after germination in a tissue-specific manner. These findings suggest that cellular morphological differentiation precedes metabolic differentiation. Considering the well-known toxicity and defense role of MIAs in matured plants, MIAs may be an important defense strategy already in the delicate developmental phase of seed germination, and biosynthesis and accumulation of MIAs may require the tissue and cellular differentiation.


Asunto(s)
Catharanthus , Alcaloides de Triptamina Secologanina , Monoterpenos/metabolismo , Catharanthus/metabolismo , Germinación , Semillas/metabolismo , Alcaloides de Triptamina Secologanina/metabolismo , Diferenciación Celular , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
10.
Proc Natl Acad Sci U S A ; 121(7): e2318586121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38319969

RESUMEN

Monoterpene indole alkaloids (MIAs) are a large and diverse class of plant natural products, and their biosynthetic construction has been a subject of intensive study for many years. The enzymatic basis for the production of aspidosperma and iboga alkaloids, which are produced exclusively by members of the Apocynaceae plant family, has recently been discovered. Three carboxylesterase (CXE)-like enzymes from Catharanthus roseus and Tabernanthe iboga catalyze regio- and enantiodivergent [4+2] cycloaddition reactions to generate the aspidosperma (tabersonine synthase, TS) and iboga (coronaridine synthase, CorS; catharanthine synthase, CS) scaffolds from a common biosynthetic intermediate. Here, we use a combined phylogenetic and biochemical approach to investigate the evolution and functional diversification of these cyclase enzymes. Through ancestral sequence reconstruction, we provide evidence for initial evolution of TS from an ancestral CXE followed by emergence of CorS in two separate lineages, leading in turn to CS exclusively in the Catharanthus genus. This progression from aspidosperma to iboga alkaloid biosynthesis is consistent with the chemotaxonomic distribution of these MIAs. We subsequently generate and test a panel of chimeras based on the ancestral cyclases to probe the molecular basis for differential cyclization activity. Finally, we show through partial heterologous reconstitution of tabersonine biosynthesis using non-pathway enzymes how aspidosperma alkaloids could have first appeared as "underground metabolites" via recruitment of promiscuous enzymes from common protein families. Our results provide insight into the evolution of biosynthetic enzymes and how new secondary metabolic pathways can emerge through small but important sequence changes following co-option of preexisting enzymatic functions.


Asunto(s)
Aspidosperma , Catharanthus , Alcaloides de Triptamina Secologanina , Tabernaemontana , Tabernaemontana/metabolismo , Aspidosperma/metabolismo , Carboxilesterasa/metabolismo , Filogenia , Alcaloides Indólicos/metabolismo , Alcaloides de Triptamina Secologanina/química , Alcaloides de Triptamina Secologanina/metabolismo , Plantas/metabolismo , Catharanthus/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-38140980

RESUMEN

Monoterpene indole alkaloids (MIAs) are a class of natural products comprised of thousands of structurally unique bioactive compounds with significant therapeutic values. Due to difficulties associated with isolation from native plant species and organic synthesis of these structurally complex molecules, microbial production of MIAs using engineered hosts are highly desired. In this work, we report the engineering of fully integrated Saccharomyces cerevisiae strains that allow de novo access to strictosidine, the universal precursor to thousands of MIAs at 30-40 mg/L. The optimization efforts were based on a previously reported yeast strain that is engineered to produce high titers of the monoterpene precursor geraniol through compartmentalization of mevalonate pathway in the mitochondria. Our approaches here included the use of CRISPR-dCas9 interference to identify mitochondria diphosphate transporters that negatively impact the titer of the monoterpene, followed by genetic inactivation; the overexpression of transcriptional regulators that increase cellular respiration and mitochondria biogenesis. Strain construction included the strategic integration of genes encoding both MIA biosynthetic and accessory enzymes into the genome under a variety of constitutive and inducible promoters. Following successful de novo production of strictosidine, complex alkaloids belonging to heteroyohimbine and corynantheine families were reconstituted in the host with introduction of additional downstream enzymes. We demonstrate that the serpentine/alstonine pair can be produced at ∼5 mg/L titer, while corynantheidine, the precursor to mitragynine can be produced at ∼1 mg/L titer. Feeding of halogenated tryptamine led to the biosynthesis of analogs of alkaloids in both families. Collectively, our yeast strain represents an excellent starting point to further engineer biosynthetic bottlenecks in this pathway and to access additional MIAs and analogs through microbial fermentation. ONE SENTENCE SUMMARY: An Saccharomyces cerevisiae-based microbial platform was developed for the biosynthesis of monoterpene indole alkaloids, including the universal precursor strictosidine and further modified heteroyohimbine and corynantheidine alkaloids.


Asunto(s)
Saccharomyces cerevisiae , Alcaloides de Triptamina Secologanina , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alcaloides de Triptamina Secologanina/metabolismo , Monoterpenos/metabolismo , Plantas/metabolismo , Ingeniería Metabólica
12.
Plant Physiol ; 194(4): 2580-2599, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38101922

RESUMEN

Triterpenes are a class of bioactive compounds with diverse biological functions, playing pivotal roles in plant defense against biotic stressors. Oxidosqualene cyclases (OSCs) serve as gatekeepers in the biosynthesis of triterpenes. In this study, we utilized a Nicotiana benthamiana heterologous expression system to characterize NaOSC1 from Nicotiana attenuata as a multifunctional enzyme capable of synthesizing lupeol, dammarenediol II, 3-alpha,20-lupanediol, and 7 other triterpene scaffolds. We also demonstrated that NaOSC2 is, in contrast, a selective enzyme, producing only the ß-amyrin scaffold. Through virus-induced gene silencing and in vitro toxicity assays, we elucidated the roles of NaOSC1 and NaOSC2 in the defense of N. attenuata against Manduca sexta larvae. Metabolomic and feature-based molecular network analyses of leaves with silenced NaOSC1 and NaOSC2 unveiled 3 potential triterpene glycoside metabolite clusters. Interestingly, features identified as triterpenes within these clusters displayed a significant negative correlation with larval mass. Our study highlights the pivotal roles of NaOSC1 and NaOSC2 from N. attenuata in the initial steps of triterpene biosynthesis, subsequently influencing defense against M. sexta through the modulation of downstream triterpene glycoside compounds.


Asunto(s)
Transferasas Intramoleculares , Manduca , Triterpenos , Animales , Nicotiana/genética , Triterpenos/metabolismo , Triterpenos Pentacíclicos , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Larva/metabolismo
13.
Nat Chem Biol ; 19(12): 1551-1560, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37932529

RESUMEN

Monoterpenoid indole alkaloids (MIAs) represent a large class of plant natural products with marketed pharmaceutical activities against a wide range of indications, including cancer, malaria and hypertension. Halogenated MIAs have shown improved pharmaceutical properties; however, synthesis of new-to-nature halogenated MIAs remains a challenge. Here we demonstrate a platform for de novo biosynthesis of two MIAs, serpentine and alstonine, in baker's yeast Saccharomyces cerevisiae and deploy it to systematically explore the biocatalytic potential of refactored MIA pathways for the production of halogenated MIAs. From this, we demonstrate conversion of individual haloindole derivatives to a total of 19 different new-to-nature haloserpentine and haloalstonine analogs. Furthermore, by process optimization and heterologous expression of a modified halogenase in the microbial MIA platform, we document de novo halogenation and biosynthesis of chloroalstonine. Together, this study highlights a microbial platform for enzymatic exploration and production of complex natural and new-to-nature MIAs with therapeutic potential.


Asunto(s)
Catharanthus , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Monoterpenos/metabolismo , Alcaloides Indólicos/metabolismo , Plantas/metabolismo , Preparaciones Farmacéuticas/metabolismo , Proteínas de Plantas/metabolismo
14.
Proc Natl Acad Sci U S A ; 120(42): e2307981120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37812727

RESUMEN

Benzoxazinoids (BXDs) form a class of indole-derived specialized plant metabolites with broad antimicrobial and antifeedant properties. Unlike most specialized metabolites, which are typically lineage-specific, BXDs occur sporadically in a number of distantly related plant orders. This observation suggests that BXD biosynthesis arose independently numerous times in the plant kingdom. However, although decades of research in the grasses have led to the elucidation of the BXD pathway in the monocots, the biosynthesis of BXDs in eudicots is unknown. Here, we used a metabolomic and transcriptomic-guided approach, in combination with pathway reconstitution in Nicotiana benthamiana, to identify and characterize the BXD biosynthetic pathways from both Aphelandra squarrosa and Lamium galeobdolon, two phylogenetically distant eudicot species. We show that BXD biosynthesis in A. squarrosa and L. galeobdolon utilize a dual-function flavin-containing monooxygenase in place of two distinct cytochrome P450s, as is the case in the grasses. In addition, we identified evolutionarily unrelated cytochrome P450s, a 2-oxoglutarate-dependent dioxygenase, a UDP-glucosyltransferase, and a methyltransferase that were also recruited into these BXD biosynthetic pathways. Our findings constitute the discovery of BXD pathways in eudicots. Moreover, the biosynthetic enzymes of these pathways clearly demonstrate that BXDs independently arose in the plant kingdom at least three times. The heterogeneous pool of identified BXD enzymes represents a remarkable example of metabolic plasticity, in which BXDs are synthesized according to a similar chemical logic, but with an entirely different set of metabolic enzymes.


Asunto(s)
Magnoliopsida , Magnoliopsida/metabolismo , Benzoxazinas/metabolismo , Poaceae/metabolismo , Redes y Vías Metabólicas/genética , Plantas/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo
15.
Nat Plants ; 9(10): 1607-1617, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37723202

RESUMEN

Cardenolides are specialized, steroidal metabolites produced in a wide array of plant families1,2. Cardenolides play protective roles in plants, but these molecules, including digoxin from foxglove (Digitalis spp.), are better known for treatment of congenital heart failure, atrial arrhythmia, various cancers and other chronic diseases3-9. However, it is still unknown how plants synthesize 'high-value', complex cardenolide structures from, presumably, a sterol precursor. Here we identify two cytochrome P450, family 87, subfamily A (CYP87A) enzymes that act on both cholesterol and phytosterols (campesterol and ß-sitosterol) to form pregnenolone, the first committed step in cardenolide biosynthesis in the two phylogenetically distant plants Digitalis purpurea and Calotropis procera. Arabidopsis plants overexpressing these CYP87A enzymes ectopically accumulated pregnenolone, whereas silencing of CYP87A in D. purpurea leaves by RNA interference resulted in substantial reduction of pregnenolone and cardenolides. Our work uncovers the key entry point to the cardenolide pathway, and expands the toolbox for sustainable production of high-value plant steroids via synthetic biology.


Asunto(s)
Cardenólidos , Digitalis , Cardenólidos/metabolismo , Plantas/metabolismo , Digitalis/química , Digitalis/metabolismo , Pregnenolona
16.
Chembiochem ; 24(21): e202300511, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37614035

RESUMEN

Psilocybe "magic mushrooms" are chemically well understood for their psychotropic tryptamines. However, the diversity of their other specialized metabolites, in particular terpenoids, has largely remained an open question. Yet, knowledge on the natural product background is critical to understand if other compounds modulate the psychotropic pharmacological effects. CubA, the single clade II sesquiterpene synthase of P. cubensis, was heterologously produced in Escherichia coli and characterized in vitro, complemented by in vivo product formation assays in Aspergillus niger as a heterologous host. Extensive GC-MS analyses proved a function as multi-product synthase and, depending on the reaction conditions, cubebol, ß-copaene, δ-cadinene, and germacrene D were detected as the major products of CubA. In addition, mature P. cubensis carpophores were analysed chromatographically which led to the detection of ß-copaene and δ-cadinene. Enzymes closely related to CubA are encoded in the genomes of various Psilocybe species. Therefore, our results provide insight into the metabolic capacity of the entire genus.


Asunto(s)
Transferasas Alquil y Aril , Psilocybe , Sesquiterpenos , Psilocybe/metabolismo , Sesquiterpenos/química , Transferasas Alquil y Aril/genética
17.
Nat Commun ; 14(1): 4540, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37500644

RESUMEN

Tomato is the highest value fruit and vegetable crop worldwide, yet produces α-tomatine, a renowned toxic and bitter-tasting anti-nutritional steroidal glycoalkaloid (SGA) involved in plant defense. A suite of modifications during tomato fruit maturation and ripening converts α-tomatine to the non-bitter and less toxic Esculeoside A. This important metabolic shift prevents bitterness and toxicity in ripe tomato fruit. While the enzymes catalyzing glycosylation and hydroxylation reactions in the Esculeoside A pathway have been resolved, the proposed acetylating step remains, to date, elusive. Here, we discovered that GAME36 (GLYCOALKALOID METABOLISM36), a BAHD-type acyltransferase catalyzes SGA-acetylation in cultivated and wild tomatoes. This finding completes the elucidation of the core Esculeoside A biosynthetic pathway in ripe tomato, allowing reconstitution of Esculeoside A production in heterologous microbial and plant hosts. The involvement of GAME36 in bitter SGA detoxification pathway points to a key role in the evolution of sweet-tasting tomato as well as in the domestication and breeding of modern cultivated tomato fruit.


Asunto(s)
Solanum lycopersicum , Frutas/metabolismo , Aciltransferasas/metabolismo , Vías Biosintéticas , Fitomejoramiento
18.
Plant Direct ; 7(7): e512, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37440931

RESUMEN

Blueberries (Vaccinium spp.) are well known for their nutritional quality, and recent work has shown that Vaccinium spp. also produce iridoids, which are specialized metabolites with potent health-promoting benefits. The iridoid glycoside monotropein, which has anti-inflammatory and antinociceptive activities, has been detected in several wild blueberry species but in only a few cultivated highbush blueberry cultivars. How monotropein is produced in blueberry and the genes involved in its biosynthesis remain to be elucidated. Using a monotropein-positive (M+) and monotropein-negative (M-) cultivar of blueberry, we employed transcriptomics and comparative genomics to identify candidate genes in the blueberry iridoid biosynthetic pathway. Orthology analysis was completed using de novo transcript assemblies for both the M+ and M- blueberry cultivars along with the known iridoid-producing plant species Catharanthus roseus to identify putative genes involved in key steps in the early iridoid biosynthetic pathway. From the identified orthologs, we functionally characterized iridoid synthase (ISY), a key enzyme involved in formation of the iridoid scaffold, from both the M+ and M- cultivars. Detection of nepetalactol suggests that ISY from both the M+ and M- cultivars produce functional enzymes that catalyze the formation of iridoids. Transcript accumulation of the putative ISY gene did not correlate with monotropein production, suggesting other genes in the monotropein biosynthetic pathway may be more directly responsible for differential accumulation of the metabolite in blueberry. Mutual rank analysis revealed that ISY is co-expressed with UDP-glucuronosyltransferase, which encodes an enzyme downstream of the ISY step. Results from this study contribute new knowledge in our understanding of iridoid biosynthesis in blueberry and could lead to development of new cultivars with increased human health benefits.

19.
Angew Chem Int Ed Engl ; 62(35): e202304843, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37326625

RESUMEN

Engineering of biosynthetic enzymes is increasingly employed to synthesize structural analogues of antibiotics. Of special interest are nonribosomal peptide synthetases (NRPSs) responsible for the production of important antimicrobial peptides. Here, directed evolution of an adenylation domain of a Pro-specific NRPS module completely switched substrate specificity to the non-standard amino acid piperazic acid (Piz) bearing a labile N-N bond. This success was achieved by UPLC-MS/MS-based screening of small, rationally designed mutant libraries and can presumably be replicated with a larger number of substrates and NRPS modules. The evolved NRPS produces a Piz-derived gramicidin S analogue. Thus, we give new impetus to the too-early dismissed idea that widely accessible low-throughput methods can switch the specificity of NRPSs in a biosynthetically useful fashion.


Asunto(s)
Péptido Sintasas , Espectrometría de Masas en Tándem , Cromatografía Liquida , Péptido Sintasas/metabolismo , Especificidad por Sustrato
20.
Nat Chem Biol ; 19(8): 1031-1041, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37188960

RESUMEN

Advances in omics technologies now permit the generation of highly contiguous genome assemblies, detection of transcripts and metabolites at the level of single cells and high-resolution determination of gene regulatory features. Here, using a complementary, multi-omics approach, we interrogated the monoterpene indole alkaloid (MIA) biosynthetic pathway in Catharanthus roseus, a source of leading anticancer drugs. We identified clusters of genes involved in MIA biosynthesis on the eight C. roseus chromosomes and extensive gene duplication of MIA pathway genes. Clustering was not limited to the linear genome, and through chromatin interaction data, MIA pathway genes were present within the same topologically associated domain, permitting the identification of a secologanin transporter. Single-cell RNA-sequencing revealed sequential cell-type-specific partitioning of the leaf MIA biosynthetic pathway that, when coupled with a single-cell metabolomics approach, permitted the identification of a reductase that yields the bis-indole alkaloid anhydrovinblastine. We also revealed cell-type-specific expression in the root MIA pathway.


Asunto(s)
Antineoplásicos , Catharanthus , Plantas Medicinales , Catharanthus/genética , Plantas Medicinales/metabolismo , Multiómica , Alcaloides Indólicos/metabolismo , Antineoplásicos/metabolismo , Monoterpenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA