Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 6413, 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38494506

RESUMEN

A plutonium-rich carbide, (U,Pu)(Al,Fe)3C3, was discovered in a hot particle from the Maralinga nuclear testing site in South Australia. The particle was produced between 1960 and 1963 and has been exposed to ambient conditions since then. The new phase belongs to a group of ternary carbides known as 'derivative-MAX phases'. It formed at high temperature within an explosion cloud via rapid eutectic crystallisation from a complex Al-Fe-U-Pu-C-O melt, and is the major Pu host in this particle. Despite signs of volume expansion due to radiation damage, (U,Pu)(Al,Fe)3C3 remains highly X-ray crystalline 60 years after its formation, with no evidence of Pu leaching from the crystals. Our results highlight that the high-energy conditions of (sub-)critical explosions can create unexpected species. Even micro-particles of a derivative-MAX phase can effectively retain low-valence (metallic-like character) Pu under environmental conditions; the slow physical and chemical weathering of these particles may contribute to the slow release of radionuclides over decades, explaining constant low-levels of radionuclides observed in fauna. This study further suggests that rapidly quenched eutectic melts may be engineered to stabilise actinides in nuclear waste products, removing the need for hydrometallurgical processing.

2.
Sci Rep ; 11(1): 10698, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34021195

RESUMEN

The high-energy release of plutonium (Pu) and uranium (U) during the Maralinga nuclear trials (1955-1963) in Australia, designed to simulate high temperature, non-critical nuclear accidents, resulted in wide dispersion µm-sized, radioactive, Pu-U-bearing 'hot' particles that persist in soils. By combining non-destructive, multi-technique synchrotron-based micro-characterization with the first nano-scale imagining of the composition and textures of six Maralinga particles, we find that all particles display intricate physical and chemical make-ups consistent with formation via condensation and cooling of polymetallic melts (immiscible Fe-Al-Pu-U; and Pb ± Pu-U) within the detonation plumes. Plutonium and U are present predominantly in micro- to nano-particulate forms, and most hot particles contain low valence Pu-U-C compounds; these chemically reactive phases are protected by their inclusion in metallic alloys. Plutonium reworking was observed within an oxidised rim in a Pb-rich particle; however overall Pu remained immobile in the studied particles, while small-scale oxidation and mobility of U is widespread. It is notoriously difficult to predict the long-term environmental behaviour of hot particles. Nano-scale characterization of the hot particles suggests that long-term, slow release of Pu from the hot particles may take place via a range of chemical and physical processes, likely contributing to on-going Pu uptake by wildlife at Maralinga.

3.
J Hazard Mater ; 416: 125745, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33866294

RESUMEN

Exploring nitrogen-containing extractants for recovering hazardous minor actinides that are workable in solutions of high acidity has been a challenge in nuclear waste treatment. Herein, we report our findings that 2,6-bis-triazolyl-pyridine (PyTri), which is ineffective as a hydrophobic ligand for minor actinide separation, turns into an excellent extractant that exhibits unexpectedly high efficiency and selectivity (SFAm/Eu = 172, 1 M HNO3) when attaching to pillar[5]arene platform. Surprisingly, the distribution ratio of Am(III) (DAm) is 4300 times higher than that of the acyclic PyTri ligand. The solvent extraction performance of this pillar[5]arene-achored PyTri not only far exceeds the best known pillar[5]arene ligands reported to date, but also stays comparable to other reported outstanding extractants. Slope analysis indicates that each P[5]A-PyTri can bind two metal ions, which is further corroborated by spectroscopic characterizations. Thermodynamic studies imply that the extraction process is exothermic and spontaneous in nature. Complexation investigation via EXAFS technique and DFT calculations strongly suggest that each Eu(III) ion is coordinated to three PyTri arms through a nine-coordination mode. This work provides a N-donor extractant that can operate at high acidity for minor actinide partitioning and implicates a promising approach for transforming poor extractants into superior ones.

4.
J Hazard Mater ; 405: 124214, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33129604

RESUMEN

Selective extraction of highly radiotoxic actinides(III) is an important and challenging task in nuclear wastewater treatment. Many proposed ligands containing S or P atoms have drawbacks including high reagent consumption and possible secondary pollution after incineration. The present work reports five novel pillar[5]arene-based extractants that are anchored with picolinamide substituents of different electronic nature by varying spacer. These ligands reveal highly efficient separation of actinides(III) over lanthanides(III). Specifically, almost all of these ligands could extract Am(III) over Eu(III) selectively at around pH 3.0 (SFAm/Eu>11) with fast extraction kinetics. Variation of the pyridine nitrogen basicity via changing para-substitution leads to an increase in the distribution ratios by a factor of over 300 times for Am(III) with an electron-withdrawing group compared to those with an electron donating group. Investigation of complexation mechanism by slope analysis, NMR, IR, EXAFS, and DFT techniques indicates that each ligand binds two metal ions by pyridine nitrogen and amide oxygen. Finally, these ligands do not show obvious decrease in both extraction and separation ability after being exposed to 250 kGy absorbed gamma radiation. These results demonstrate the potential application of pillar[5]arene-picolinamides for actinide(III) separation.

5.
Proc Natl Acad Sci U S A ; 117(52): 33099-33106, 2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318194

RESUMEN

A crucial issue in cuprates is the extent and mechanism of the coupling of the lattice to the electrons and the superconductivity. Here we report Cu K edge extended X-ray absorption fine structure measurements elucidating the internal quantum tunneling polaron (iqtp) component of the dynamical structure in two heavily overdoped superconducting cuprate compounds, tetragonal YSr2Cu2.75Mo0.25O7.54 with superconducting critical temperature, Tc = 84 K and hole density p = 0.3 to 0.5 per planar Cu, and the tetragonal phase of Sr2CuO3.3 with Tc = 95 K and p = 0.6. In YSr2Cu2.75Mo0.25O7.54 changes in the Cu-apical O two-site distribution reflect a sequential renormalization of the double-well potential of this site beginning at Tc, with the energy difference between the two minima increasing by ∼6 meV between Tc and 52 K. Sr2CuO3.3 undergoes a radically larger transformation at Tc, >1-Šdisplacements of the apical O atoms. The principal feature of the dynamical structure underlying these transformations is the strongly anharmonic oscillation of the apical O atoms in a double-well potential that results in the observation of two distinct O sites whose Cu-O distances indicate different bonding modes and valence-charge distributions. The coupling of the superconductivity to the iqtp that originates in this nonadiabatic coupling between the electrons and lattice demonstrates an important role for the dynamical structure whereby pairing occurs even in a system where displacements of the atoms that are part of the transition are sufficiently large to alter the Fermi surface. The synchronization and dynamic coherence of the iqtps resulting from the strong interactions within a crystal would be expected to influence this process.

6.
Proc Natl Acad Sci U S A ; 117(9): 4559-4564, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32071213

RESUMEN

A common characteristic of many "overdoped" cuprates prepared with high-pressure oxygen is Tc values ≥ 50 K that often exceed that of optimally doped parent compounds, despite O stoichiometries that place the materials at the edge or outside of the conventional boundary between superconducting and normal Fermi liquid states. X-ray absorption fine-structure (XAFS) measurements at 52 K on samples of high-pressure oxygen (HPO) YSr2Cu2.75Mo0.25O7.54, Tc = 84 K show that the Mo is in the (VI) valence in an unusually undistorted octahedral geometry with predominantly Mo neighbors that is consistent with its assigned substitution for Cu in the chain sites of the structure. Perturbations of the Cu environments are minimal, although the Cu X-ray absorption near-edge structure (XANES) differs from that in other cuprates. The primary deviation from the crystal structure is therefore nanophase separation into Mo- and Cu-enriched domains. There are, however, indications that the dynamical attributes of the structure are altered relative to YBa2Cu3O7, including a shift of the Cu-apical O two-site distribution from the chain to the plane Cu sites. Another effect that would influence Tc is the possibility of multiple bands at the Fermi surface caused by the presence of the second phase and the lowering of the Fermi level.

7.
Proc Natl Acad Sci U S A ; 117(9): 4565-4570, 2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32060125

RESUMEN

The local structure of the highly "overdoped" 95 K superconductor Sr2CuO3.3 determined by Cu K X-ray absorption fine structure (XAFS) at 62 K in magnetically oriented samples shows that 1) the magnetization is perpendicular to the c axis; 2) at these levels of precision the Cu sublattice is tetragonal in agreement with the crystal structure; the O sublattice has 3) continuous -Cu-O- chains that orient perpendicular to an applied magnetic field; 4) approximately half-filled -Cu-O- chains that orient parallel to this field; 5) a substantial number of apical O vacancies; 6) O ions at some apical positions with expanded Cu-O distances; and 7) interstitial positions that imply highly displaced Sr ions. These results contradict the universally accepted features of cuprates that require intact CuO2 planes, magnetization along the c axis, and a termination of the superconductivity when the excess charge on the CuO2 Cu ions exceeds 0.27. These radical differences in charge and structure demonstrate that this compound constitutes a separate class of Cu-O-based superconductors in which the superconductivity originates in a different, more complicated structural unit than CuO2 planes while retaining exceptionally high transition temperatures.

8.
RSC Adv ; 9(21): 11762-11773, 2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35517003

RESUMEN

Investigation of uranium migration in the waste piles of granite rock in the Limousin region of France is vital for developing strategies which address related environmental issues. Despite the fact that the concentration of uranium is far below the lower end of the cut off level in these piles, the large volume of rocks - which measure in the hundreds of metric tons - and their conditions of repository make this type of waste a source of concern for the international community. In this work, X-ray absorption spectroscopy techniques (XAFS) were employed in order to identify the speciation of uranium in the different categories of samples collected from various regions of the rock piles which had undergone 50 years of weathering. The samples, such as weathered granite, arena and technosoils, were studied in order to probe the transformation of the U bearing complex. XANES indicates U(vi) valence with uranyl species in all samples. Using a linear combination analysis and shell fitting approach, distinct speciation of uranium was observed in the different categories of samples. In the weathered rock and arena samples with relics of magmatic U minerals, uranyl phosphates comparable to autunite are shown to be dominantly linked with monodentate PO4 3-. However, the samples collected from technosoils are found to have a mixture of U-phosphate and U-clay minerals (phyllosilicates and silicates). Irrespective of the collection location, all the samples were found to contain U(vi)-oxo species The equatorial O ligands occur as two shells with an average separation of 0.14-0.21 Å. Moreover, all the samples have an Al/Si/P shell around 3.1 Å. A detailed EXAFS curve fit analysis shows that disorder afflicts the entire range of samples which can be attributed to either inhomogeneous binding sites on the disordered clay minerals or to the presence of a mixture of uranium-bearing minerals. XAFS investigations highlight the uranyl overriding forms of U (as U sorbed on clay minerals and secondary uranyl phosphates or silicates) contribute to the retention of U, even in oxidizing conditions known to enhance the mobility of U.

9.
J Am Chem Soc ; 140(51): 17977-17984, 2018 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-30540455

RESUMEN

Evaluating the nature of chemical bonding for actinide elements represents one of the most important and long-standing problems in actinide science. We directly address this challenge and contribute a Cl K-edge X-ray absorption spectroscopy and relativistic density functional theory study that quantitatively evaluates An-Cl covalency in AnCl62- (AnIV = Th, U, Np, Pu). The results showed significant mixing between Cl 3p- and AnIV 5f- and 6d-orbitals (t1u*/t2u* and t2 g*/eg *), with the 6d-orbitals showing more pronounced covalent bonding than the 5f-orbitals. Moving from Th to U, Np, and Pu markedly changed the amount of M-Cl orbital mixing, such that AnIV 6d - and Cl 3p-mixing decreased and metal 5f - and Cl 3p-orbital mixing increased across this series.

10.
Sci Rep ; 5: 15278, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26472071

RESUMEN

Bose-Einstein condensates (BECs) composed of polarons would be an advance because they would combine coherently charge, spin, and a crystal lattice. Following our earlier report of unique structural and spectroscopic properties, we now identify potentially definitive evidence for polaronic BECs in photo- and chemically doped UO2(+x) on the basis of exceptional coherence in the ultrafast time dependent terahertz absorption and microwave spectroscopy results that show collective behavior including dissipation patterns whose precedents are condensate vortex and defect disorder and condensate excitations. That some of these signatures of coherence in an atom-based system extend to ambient temperature suggests a novel mechanism that could be a synchronized, dynamical, disproportionation excitation, possibly via the solid state analog of a Feshbach resonance that promotes the coherence. Such a mechanism would demonstrate that the use of ultra-low temperatures to establish the BEC energy distribution is a convenience rather than a necessity, with the actual requirement for the particles being in the same state that is not necessarily the ground state attainable by other means. A macroscopic quantum object created by chemical doping that can persist to ambient temperature and resides in a bulk solid would be revolutionary in a number of scientific and technological fields.

11.
Environ Sci Technol ; 49(11): 6474-84, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-25815708

RESUMEN

The speciation of U and Pu in soil and concrete from Rocky Flats and in particles from soils from Chernobyl, Hanford, Los Alamos, and McGuire Air Force Base and bottom sediments from Mayak was determined by a combination of X-ray absorption fine structure (XAFS) spectroscopy and X-ray fluorescence (XRF) element maps. These experiments identify four types of speciation that sometimes may and other times do not exhibit an association with the source terms and histories of these samples: relatively well ordered PuO2+x and UO2+x that had equilibrated with O2 and H2O under both ambient conditions and in fires or explosions; instances of small, isolated particles of U as UO2+x, U3O8, and U(VI) species coexisting in close proximity after decades in the environment; alteration phases of uranyl with other elements including ones that would not have come from soils; and mononuclear Pu-O species and novel PuO2+x-type compounds incorporating additional elements that may have occurred because the Pu was exposed to extreme chemical conditions such as acidic solutions released directly into soil or concrete. Our results therefore directly demonstrate instances of novel complexity in the Å and µm-scale chemical speciation and reactivity of U and Pu in their initial formation and after environmental exposure as well as occasions of unexpected behavior in the reaction pathways over short geological but significant sociological times. They also show that incorporating the actual disposal and site conditions and resultant novel materials such as those reported here may be necessary to develop the most accurate predictive models for Pu and U in the environment.


Asunto(s)
Plutonio/análisis , Contaminantes Radiactivos del Suelo/análisis , Uranio/análisis , Accidente Nuclear de Chernóbil , Colorado , New Jersey , New Mexico , Plutonio/química , Federación de Rusia , Espectrometría por Rayos X , Ucrania , Uranio/química , Washingtón
12.
J Am Chem Soc ; 137(7): 2506-23, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25689484

RESUMEN

Covalency in Ln-Cl bonds of Oh-LnCl6(x-) (x = 3 for Ln = Ce(III), Nd(III), Sm(III), Eu(III), Gd(III); x = 2 for Ln = Ce(IV)) anions has been investigated, primarily using Cl K-edge X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TDDFT); however, Ce L3,2-edge and M5,4-edge XAS were also used to characterize CeCl6(x-) (x = 2, 3). The M5,4-edge XAS spectra were modeled using configuration interaction calculations. The results were evaluated as a function of (1) the lanthanide (Ln) metal identity, which was varied across the series from Ce to Gd, and (2) the Ln oxidation state (when practical, i.e., formally Ce(III) and Ce(IV)). Pronounced mixing between the Cl 3p- and Ln 5d-orbitals (t2g* and eg*) was observed. Experimental results indicated that Ln 5d-orbital mixing decreased when moving across the lanthanide series. In contrast, oxidizing Ce(III) to Ce(IV) had little effect on Cl 3p and Ce 5d-orbital mixing. For LnCl6(3-) (formally Ln(III)), the 4f-orbitals participated only marginally in covalent bonding, which was consistent with historical descriptions. Surprisingly, there was a marked increase in Cl 3p- and Ce(IV) 4f-orbital mixing (t1u* + t2u*) in CeCl6(2-). This unexpected 4f- and 5d-orbital participation in covalent bonding is presented in the context of recent studies on both tetravalent transition metal and actinide hexahalides, MCl6(2-) (M = Ti, Zr, Hf, U).

13.
Proc Natl Acad Sci U S A ; 112(4): 1013-8, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25583517

RESUMEN

The use of electric fields to alter the conductivity of correlated electron oxides is a powerful tool to probe their fundamental nature as well as for the possibility of developing novel electronic devices. Vanadium dioxide (VO2) is an archetypical correlated electron system that displays a temperature-controlled insulating to metal phase transition near room temperature. Recently, ionic liquid gating, which allows for very high electric fields, has been shown to induce a metallic state to low temperatures in the insulating phase of epitaxially grown thin films of VO2. Surprisingly, the entire film becomes electrically conducting. Here, we show, from in situ synchrotron X-ray diffraction and absorption experiments, that the whole film undergoes giant, structural changes on gating in which the lattice expands by up to ∼3% near room temperature, in contrast to the 10 times smaller (∼0.3%) contraction when the system is thermally metallized. Remarkably, these structural changes are fully reversible on reverse gating. Moreover, we find these structural changes and the concomitant metallization are highly dependent on the VO2 crystal facet, which we relate to the ease of electric-field-induced motion of oxygen ions along chains of edge-sharing VO6 octahedra that exist along the (rutile) c axis.

14.
Inorg Chem ; 52(7): 3547-55, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23485079

RESUMEN

Hexavalent neptunium can be solubilized in 0.5-3.5 M aqueous MOH (M = Li(+), Na(+), NMe4(+) = TMA(+)) solutions. Single crystals were obtained from cooling of a dilute solution of Co(NH3)6Cl3 and NpO2(2+) in 3.5 M [N(Me)4]OH to 5 °C. A single-crystal X-ray diffraction study revealed the molecular formula of [Co(NH3)6]2[NpO2(OH)4]3·H2O, isostructural with the uranium analogue. The asymmetric unit contains three distinct NpO2(OH)4(2-) ions, each with pseudooctahedral coordination geometry with trans-oxo ligands. The average Np═O and Np-OH distances were determined to be 1.80(1) and 2.24(1) Å, respectively. EXAFS data and fits at the Np L(III)-edge on solid [Co(NH3)6]2[NpO2(OH)4]3·H2O and aqueous solutions of NpO2(2+) in 2.5 and 3.5 M (TMA)OH revealed bond lengths nearly identical with those determined by X-ray diffraction but with an increase in the number of equatorial ligands with increasing (TMA)OH concentration. Raman spectra of single crystals of [Co(NH3)6]2[NpO2(OH)4]3·H2O reveal a ν1(O═Np═O) symmetric stretch at 741 cm(-1). Raman spectra of NpO2(2+) recorded in a 0.6-2.2 M LiOH solution reveal a single ν1 frequency of 769 cm(-1). Facile exchange of the neptunyl oxo ligands with the water solvent was also observed with Raman spectroscopy performed with (16)O- and (18)O-enriched water solvent. The combination of EXAFS and Raman data suggests that NpO2(OH)4(2-) is the dominant solution species under the conditions of study and that a small amount of a second species, NpO2(OH)5(3-), may also be present at higher alkalinity. Crystal data for [Co(NH3)6]2[NpO2(OH)4]3·H2O: monoclinic, space group C2/c, a = 17.344(4) Å, b = 12.177(3) Å, c = 15.273 Å, ß = 120.17(2)°, Z = 4, R1 = 0.0359, wR2 = 0.0729.

15.
J Am Chem Soc ; 135(6): 2279-90, 2013 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-23320417

RESUMEN

Synthetic routes to salts containing uranium bis-imido tetrahalide anions [U(NR)(2)X(4)](2-) (X = Cl(-), Br(-)) and non-coordinating NEt(4)(+) and PPh(4)(+) countercations are reported. In general, these compounds can be prepared from U(NR)(2)I(2)(THF)(x) (x = 2 and R = (t)Bu, Ph; x = 3 and R = Me) upon addition of excess halide. In addition to providing stable coordination complexes with Cl(-), the [U(NMe)(2)](2+) cation also reacts with Br(-) to form stable [NEt(4)](2)[U(NMe)(2)Br(4)] complexes. These materials were used as a platform to compare electronic structure and bonding in [U(NR)(2)](2+) with [UO(2)](2+). Specifically, Cl K-edge X-ray absorption spectroscopy (XAS) and both ground-state and time-dependent hybrid density functional theory (DFT and TDDFT) were used to probe U-Cl bonding interactions in [PPh(4)](2)[U(N(t)Bu)(2)Cl(4)] and [PPh(4)](2)[UO(2)Cl(4)]. The DFT and XAS results show the total amount of Cl 3p character mixed with the U 5f orbitals was roughly 7-10% per U-Cl bond for both compounds, which shows that moving from oxo to imido has little effect on orbital mixing between the U 5f and equatorial Cl 3p orbitals. The results are presented in the context of recent Cl K-edge XAS and DFT studies on other hexavalent uranium chloride systems with fewer oxo or imido ligands.


Asunto(s)
Cloro/química , Imidas/química , Compuestos Organometálicos/química , Uranio/química , Modelos Moleculares , Compuestos Organometálicos/síntesis química , Teoría Cuántica , Espectroscopía de Absorción de Rayos X
16.
Environ Sci Technol ; 46(21): 11610-7, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-23016948

RESUMEN

Time-dependent reduction of PuO(2)(am) was studied over a range of pH values in the presence of aqueous Fe(II) and magnetite (Fe(3)O(4)) nanoparticles. At early time frames (up to 56 days) very little aqueous Pu was mobilized from PuO(2)(am), even though measured pH and redox potentials, coupled to equilibrium thermodynamic modeling, indicated the potential for significant reduction of PuO(2)(am) to relatively soluble Pu(III). Introduction of Eu(III) or Nd(III) to the suspensions as competitive cations to displace possible sorbed Pu(III) resulted in the release of significant concentrations of aqueous Pu. However, the similarity of aqueous Pu concentrations that resulted from the introduction of Eu(III)/Nd(III) to suspensions with and without magnetite indicated that the Pu was solubilized from PuO(2)(am), not from magnetite.


Asunto(s)
Nanopartículas de Magnetita/química , Óxidos/química , Plutonio/química , Europio/química , Concentración de Iones de Hidrógeno , Hierro/química , Neodimio/química , Oxidación-Reducción , Suspensiones , Contaminantes Radiactivos del Agua/química
17.
Inorg Chem ; 51(9): 4965-71, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22497564

RESUMEN

The structure of ß-molybdenum dichloride is compared with that of TcCl(2) using EXAFS spectroscopy. For TcCl(2), the Tc atom is surrounded by Tc atoms at 2.13(2), 3.45(3), 3.79(4), and 4.02(4) Å. For ß-MoCl(2), the Mo is surrounded by Mo atoms at 2.21(2), 2.91(3), and 3.83(4) Å. The latter distances are consistent with the presence of an [Mo(4)Cl(12)] unit in the solid state, one constituted by two triply Mo-Mo-bonded [Mo(2)Cl(8)] units. First-principles calculations show that ß-MoCl(2) with the TcCl(2) "structure type" is less stable than α-MoCl(2) (Mo(6)Cl(12)) or [Mo(4)Cl(12)] edge-sharing clusters.

18.
J Am Chem Soc ; 134(12): 5586-97, 2012 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-22404133

RESUMEN

Chlorine K-edge X-ray absorption spectroscopy (XAS) and ground-state and time-dependent hybrid density functional theory (DFT) were used to probe the electronic structures of O(h)-MCl(6)(2-) (M = Ti, Zr, Hf, U) and C(4v)-UOCl(5)(-), and to determine the relative contributions of valence 3d, 4d, 5d, 6d, and 5f orbitals in M-Cl bonding. Spectral interpretations were guided by time-dependent DFT calculated transition energies and oscillator strengths, which agree well with the experimental XAS spectra. The data provide new spectroscopic evidence for the involvement of both 5f and 6d orbitals in actinide-ligand bonding in UCl(6)(2-). For the MCl(6)(2-), where transitions into d orbitals of t(2g) symmetry are spectroscopically resolved for all four complexes, the experimentally determined Cl 3p character per M-Cl bond increases from 8.3(4)% (TiCl(6)(2-)) to 10.3(5)% (ZrCl(6)(2-)), 12(1)% (HfCl(6)(2-)), and 18(1)% (UCl(6)(2-)). Chlorine K-edge XAS spectra of UOCl(5)(-) provide additional insights into the transition assignments by lowering the symmetry to C(4v), where five pre-edge transitions into both 5f and 6d orbitals are observed. For UCl(6)(2-), the XAS data suggest that orbital mixing associated with the U 5f orbitals is considerably lower than that of the U 6d orbitals. For both UCl(6)(2-) and UOCl(5)(-), the ground-state DFT calculations predict a larger 5f contribution to bonding than is determined experimentally. These findings are discussed in the context of conventional theories of covalent bonding for d- and f-block metal complexes.

19.
Dalton Trans ; 41(7): 2003-10, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22186832

RESUMEN

We report the interaction between B-type tri-lacunary heteropolyoxotungstate anions and actinyl(V) cations in aqueous solution, yielding a greater understanding of the stability of the O≡An≡O(1+) linear dioxo actinide moiety. Previously we reported that B-α-[BiW(9)O(33)](9-) and B-α-[SbW(9)O(33)](9-) will react with NpO(2)(1+) to yield [(Np(3)W(4)O(15))(H(2)O)(3)(MW(9)O(33))(3)](18-) (M = Bi, or Sb). Single crystal structural characterisation of salts of these complexes revealed a core in which three Np(V) atoms interact with a central W(VI) atom through bridging oxo groups. These bridging oxygen atoms come from one of the two axial oxygens in O≡Np≡O(1+) and represent a highly unusual interaction for a discrete molecular species. In this study visible/near infra-red spectroscopy indicates that [(Np(3)W(4)O(15))(H(2)O)(3)(BiW(9)O(33))(3)](18-) could be readily stabilized in solution at near neutral pH for several months, with (NH(4))(14)Na(4)[(Np(3)W(4)O(15))(H(2)O)(39)BiW(9)O(33))(3)]·62H(2)O crystallising from solution in high yield. At lower pH and [BiW(9)O(33)](9-) : NpO(2)(1+) ratios additional Np(V) species could be observed in solution. Stabilization of [(Np(3)W(4)O(15))(H(2)O)(3)(SbW(9)O(33))(3)](18-) in solution proved more challenging, with several distinctive Np(V) near infra-red transitions observed in solution. Slow complexation kinetics and reduction to Np(IV) was also observed. High [SbW(9)O(33)](9-) : NpO(2)(1+) molar ratios and careful control of solution pH was required to prepare solutions in which [(Np(3)W(4)O(15))(H(2)O)(3)(SbW(9)O(33))(3)](18-) was the only neptunium containing species. In stark contrast to the NpO(2)(1+) chemistry, [BiW(9)O(33)](9-) readily oxidizes PuO(2)(1+) to PuO(2)(2+) yielding further evidence of the decreased stability of Pu(V)vs. Np(V). Np L(II)-edge XAFS measurement revealed very good agreement with single crystal diffraction data for the Np structural environment for [(Np(3)W(4)O(15))(H(2)O)(3)(MW(9)O(33))(3)](18-) (M = Bi, or Sb) in the solid state. There was also good agreement between coordination shells for [(Np(3)W(4)O(15))(H(2)O)(3)(BiW(9)O(33))(3)](18-) in the solid state and in solution, yielding further confirmation of the high stability of this particular cluster.

20.
J Am Chem Soc ; 133(31): 11837-9, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21770404

RESUMEN

DNA-templated silver nanoclusters are promising biological fluorescence probes due to their useful fluorescence properties, including tunability of emission wavelength through DNA template sequence variations. Ag K-edge EXAFS analysis of DNA-templated silver nanoclusters has been used to obtain insight into silver nanocluster bonding, size, and structural correlations to fluorescence. The results indicate the presence of small silver nanoclusters (<30 silver atoms) containing Ag-Ag bonds and Ag-N/O ligations to DNA. The DNA sequence used leads to differences in silver-DNA ligation as well as silver nanocluster size. The results support a model in which cooperative effects of both Ag-DNA ligation and variations in cluster size lead to the tuning of the fluorescence emission of DNA-templated silver nanoclusters.


Asunto(s)
ADN/química , Fluorescencia , Nanopartículas del Metal/química , Plata/química , Secuencia de Bases , Estructura Molecular , Espectroscopía de Absorción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...