Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(35): e2116655119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994643

RESUMEN

The Mediterranean region has been identified as a climate hot spot, with models projecting a robust warming and rainfall decline in response to increasing greenhouse gases. The projected rainfall decline would have impacts on agriculture and water resources. Can such changes be reversed with significant reductions in greenhouse gases? To explore this, we examine large ensembles of a high-resolution climate model with various future radiative forcing scenarios, including a scenario with substantial reductions in greenhouse gas concentrations beginning in the mid-21st century. In response to greenhouse gas reductions, the Mediterranean summer rainfall decline is reversed, but the winter rainfall decline continues. This continued winter rainfall decline results from a persistent atmospheric anticyclone over the western Mediterranean. Using additional numerical experiments, we show that the anticyclone and continued winter rainfall decline are attributable to greenhouse gas-induced weakening of the Atlantic Meridional Overturning Circulation (AMOC) that continues throughout the 21st century. The persistently weak AMOC, in concert with greenhouse gas reductions, leads to rapid cooling and sea ice growth in the subpolar North Atlantic. This cooling leads to a strong cyclonic atmospheric circulation anomaly over the North Atlantic subpolar gyre and, via atmospheric teleconnections, to the anticyclonic circulation anomaly over the Mediterranean. The failure to reverse the winter rainfall decline, despite substantial climate change mitigation, is an example of a "surprise" in the climate system. In this case, a persistent AMOC change unexpectedly impedes the reversibility of Mediterranean climate change. Such surprises could complicate pathways toward full climate recovery.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Gases de Efecto Invernadero , Lluvia , Movimientos del Agua , Océano Atlántico , Gases de Efecto Invernadero/efectos adversos , Gases de Efecto Invernadero/análisis , Cubierta de Hielo , Región Mediterránea , Estaciones del Año
2.
Proc Natl Acad Sci U S A ; 117(47): 29495-29503, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33168753

RESUMEN

Three consecutive dry winters (2015-2017) in southwestern South Africa (SSA) resulted in the Cape Town "Day Zero" drought in early 2018. The contribution of anthropogenic global warming to this prolonged rainfall deficit has previously been evaluated through observations and climate models. However, model adequacy and insufficient horizontal resolution make it difficult to precisely quantify the changing likelihood of extreme droughts, given the small regional scale. Here, we use a high-resolution large ensemble to estimate the contribution of anthropogenic climate change to the probability of occurrence of multiyear SSA rainfall deficits in past and future decades. We find that anthropogenic climate change increased the likelihood of the 2015-2017 rainfall deficit by a factor of five to six. The probability of such an event will increase from 0.7 to 25% by the year 2100 under an intermediate-emission scenario (Shared Socioeconomic Pathway 2-4.5 [SSP2-4.5]) and to 80% under a high-emission scenario (SSP5-8.5). These results highlight the strong sensitivity of the drought risk in SSA to future anthropogenic emissions.


Asunto(s)
Cambio Climático , Sequías , Modelos Teóricos , Lluvia , Seguimiento de Parámetros Ecológicos/estadística & datos numéricos , Predicción , Probabilidad , Estaciones del Año , Sudáfrica
3.
Proc Natl Acad Sci U S A ; 117(20): 10706-10714, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32366651

RESUMEN

Owing to the limited length of observed tropical cyclone data and the effects of multidecadal internal variability, it has been a challenge to detect trends in tropical cyclone activity on a global scale. However, there is a distinct spatial pattern of the trends in tropical cyclone frequency of occurrence on a global scale since 1980, with substantial decreases in the southern Indian Ocean and western North Pacific and increases in the North Atlantic and central Pacific. Here, using a suite of high-resolution dynamical model experiments, we show that the observed spatial pattern of trends is very unlikely to be explained entirely by underlying multidecadal internal variability; rather, external forcing such as greenhouse gases, aerosols, and volcanic eruptions likely played an important role. This study demonstrates that a climatic change in terms of the global spatial distribution of tropical cyclones has already emerged in observations and may in part be attributable to the increase in greenhouse gas emissions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA