Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Intervalo de año de publicación
1.
Biotechnol Prog ; 38(2): e3227, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34854259

RESUMEN

Recent advancements in cell culture engineering have allowed drug manufacturers to achieve higher productivity by driving higher product titers through cell line engineering and high-cell densities. However, these advancements have shifted the burden to clarification and downstream processing where the difficulties now revolve around removing higher levels of process- and product-related impurities. As a result, a lot of research efforts have turned to developing new approaches and technologies or process optimization to still deliver high quality biological products while controlling cost of goods. Here, we explored the impact of a novel single use technology employing chromatographic principle-based clarification for a process-intensified cell line technology. In this study, a 16% economic benefit ($/g) was observed using a single-use chromatographic clarification compared to traditional single-use clarification technology by improving the overall product cost through decreased operational complexity, higher loading capacity, increased product recovery, and higher impurity clearance. In the end, the described novel chromatographic approach significantly simplified and enhanced the cell culture fluid harvest unit operation by combining the reduction of insoluble and key soluble contaminants of the harvest fluid into a single stage.


Asunto(s)
Productos Biológicos , Animales , Células CHO , Cromatografía de Afinidad , Cricetinae , Cricetulus , Proteínas Recombinantes/genética
2.
Polymers (Basel) ; 8(11)2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-30974668

RESUMEN

Soy wood adhesive bond strengths reported in different literature studies are difficult to compare because a variety of temperatures and other conditions have been used for the bonding and testing step. Some reports have indicated bond strengths are sensitive to bonding temperature, but the reason(s) for this has not been intensively investigated. Although these prior studies differ in other ways (such as type of soy, wood species, and test method), the effect of bonding temperature has not been clearly examined, which is important for focusing commercial applications. A tensile shear test using two-parallel-ply veneer specimens with smooth maple was used to measure both the dry and wet cohesive strength of soy adhesives. Although the soy adhesives gave very good strengths and dry wood failure, they often have low wood failure and shear strengths under wet conditions when bonded at 120 °C. However, wet strength greatly increased as the bonding temperature increased (120, 150 and 180 °C) for these two-ply tests with. This study examined the use of different types of soys (flours, concentrates and isolates) and different bonding temperatures and bonding conditions to evacuate several possible mechanisms for this temperature sensitivity, with coalescence being the most likely.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...