Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Chem Biol ; 13(9): 2708-2718, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30118588

RESUMEN

Myotonic dystrophy type 1 (DM1) is an autosomal dominant, CTG•CAG microsatellite expansion disease. Expanded CUG repeat RNA sequester the muscleblind-like (MBNL) family of RNA-binding proteins, thereby disrupting their normal cellular function which leads to global mis-regulation of RNA processing. Previously, the small molecule furamidine was shown to reduce CUG foci and rescue mis-splicing in a DM1 HeLa cell model and to rescue mis-splicing in the HSALR DM1 mouse model, but furamidine's mechanism of action was not explored. Here we use a combination of biochemical, cell toxicity, and genomic studies in DM1 patient-derived myotubes and the HSALR DM1 mouse model to investigate furamidine's mechanism of action. Mis-splicing rescue was observed in DM1 myotubes and the HSALR DM1 mouse with furamidine treatment. Interestingly, while furamidine was found to bind CTG•CAG repeat DNA with nanomolar affinity, a reduction in expanded CUG repeat transcript levels was observed in the HSALR DM1 mouse but not DM1 patient-derived myotubes. Further investigation in these cells revealed that furamidine treatment at nanomolar concentrations led to up-regulation of MBNL1 and MBNL2 protein levels and a reduction of ribonuclear foci. Additionally, furamidine was shown to bind CUG RNA with nanomolar affinity and disrupted the MBNL1 -CUG RNA complex in vitro at micromolar concentrations. Furamidine's likely promiscuous interactions in vitro and in vivo appear to affect multiple pathways in the DM1 mechanism to rescue mis-splicing, yet surprisingly furamidine was shown globally to rescue many mis-splicing events with only modest off-target effects on gene expression in the HSALR DM1 mouse model. Importantly, over 20% of the differentially expressed genes were shown to be returned, to varying degrees, to wild-type expression levels.


Asunto(s)
Benzamidinas/uso terapéutico , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/genética , Empalme del ARN/efectos de los fármacos , Animales , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Benzamidinas/farmacología , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Ratones , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Distrofia Miotónica/metabolismo , Distrofia Miotónica/patología , ARN/genética , ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
2.
Cell Rep ; 13(11): 2386-2394, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26686629

RESUMEN

Myotonic dystrophy type 1 (DM1) is an inherited disease characterized by the inability to relax contracted muscles. Affected individuals carry large CTG expansions that are toxic when transcribed. One possible treatment approach is to reduce or eliminate transcription of CTG repeats. Actinomycin D (ActD) is a potent transcription inhibitor and FDA-approved chemotherapeutic that binds GC-rich DNA with high affinity. Here, we report that ActD decreased CUG transcript levels in a dose-dependent manner in DM1 cell and mouse models at significantly lower concentrations (nanomolar) compared to its use as a general transcription inhibitor or chemotherapeutic. ActD also significantly reversed DM1-associated splicing defects in a DM1 mouse model, and did so within the currently approved human treatment range. RNA-seq analyses showed that low concentrations of ActD did not globally inhibit transcription in a DM1 mouse model. These results indicate that transcription inhibition of CTG expansions is a promising treatment approach for DM1.


Asunto(s)
Dactinomicina/farmacología , Distrofia Miotónica/patología , ARN/metabolismo , Expansión de Repetición de Trinucleótido/efectos de los fármacos , Animales , Proteínas Relacionadas con la Autofagia , Secuencia de Bases , Calorimetría , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HeLa , Humanos , Ratones , Microscopía Fluorescente , Distrofia Miotónica/metabolismo , ARN/química , Empalme del ARN/efectos de los fármacos , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Análisis de Secuencia de ARN , Transcripción Genética/efectos de los fármacos , Expansión de Repetición de Trinucleótido/genética , Proteínas de Transporte Vesicular
3.
Nucleic Acids Res ; 42(20): 12768-78, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25303993

RESUMEN

CUG repeat expansions in the 3' UTR of dystrophia myotonica protein kinase (DMPK) cause myotonic dystrophy type 1 (DM1). As RNA, these repeats elicit toxicity by sequestering splicing proteins, such as MBNL1, into protein-RNA aggregates. Structural studies demonstrate that CUG repeats can form A-form helices, suggesting that repeat secondary structure could be important in pathogenicity. To evaluate this hypothesis, we utilized structure-stabilizing RNA modifications pseudouridine (Ψ) and 2'-O-methylation to determine if stabilization of CUG helical conformations affected toxicity. CUG repeats modified with Ψ or 2'-O-methyl groups exhibited enhanced structural stability and reduced affinity for MBNL1. Molecular dynamics and X-ray crystallography suggest a potential water-bridging mechanism for Ψ-mediated CUG repeat stabilization. Ψ modification of CUG repeats rescued mis-splicing in a DM1 cell model and prevented CUG repeat toxicity in zebrafish embryos. This study indicates that the structure of toxic RNAs has a significant role in controlling the onset of neuromuscular diseases.


Asunto(s)
Empalme Alternativo , Distrofia Miotónica/genética , ARN/química , Animales , Disparidad de Par Base , Modelos Animales de Enfermedad , Células HeLa , Humanos , Metilación , Conformación de Ácido Nucleico , Seudouridina/química , Proteínas de Unión al ARN/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , Agua/química , Pez Cebra/genética
4.
ACS Chem Biol ; 8(11): 2528-37, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24028068

RESUMEN

Myotonic dystrophy (DM) is one of the most common forms of muscular dystrophy. DM is an autosomal dominant disease caused by a toxic gain of function RNA. The toxic RNA is produced from expanded noncoding CTG/CCTG repeats, and these CUG/CCUG repeats sequester the Muscleblind-like (MBNL) family of RNA binding proteins. The MBNL proteins are regulators of alternative splicing, and their sequestration has been linked with mis-splicing events in DM. A previously reported screen for small molecules found that pentamidine was able to improve splicing defects associated with DM. Biochemical experiments and cell and mouse model studies of the disease indicate that pentamidine and related compounds may work through binding the CTG*CAG repeat DNA to inhibit transcription. Analysis of a series of methylene linker analogues of pentamidine revealed that heptamidine reverses splicing defects and rescues myotonia in a DM1 mouse model.


Asunto(s)
Distrofia Miotónica , ARN/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Pentamidina/química , Pentamidina/farmacología , Reacción en Cadena de la Polimerasa , Bibliotecas de Moléculas Pequeñas/química
5.
Biochemistry ; 51(42): 8330-7, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23025897

RESUMEN

Myotonic dystrophy type 1 (DM1) is a microsatellite expansion disorder caused by the aberrant expansion of CTG repeats in the 3'-untranslated region of the DMPK gene. When transcribed, the toxic RNA CUG repeats sequester RNA binding proteins, which leads to disease symptoms. The expanded CUG repeats can adopt a double-stranded structure, and targeting this helix is a therapeutic strategy for DM1. To improve our understanding of the 5'CUG/3'GUC motif and how it may interact with proteins and small molecules, we designed a short CUG helix attached to a GAAA tetraloop/receptor to facilitate crystal packing. Here we report the highest-resolution structure (1.95 Å) to date of a GAAA tetraloop/receptor and the CUG helix it was used to crystallize. Within the CUG helix, we identify two different forms of noncanonical U-U pairs and reconfirm that CUG repeats are essentially A-form. An analysis of all noncanonical U-U pairs in the context of CUG repeats revealed six different classes of conformations that the noncanonical U-U pairs are able to adopt.


Asunto(s)
Oligodesoxirribonucleótidos/química , Proteínas de Unión al ARN/química , ARN/química , Expansión de Repetición de Trinucleótido , Cristalización , Cristalografía por Rayos X , Humanos , Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica , Conformación de Ácido Nucleico , Proteínas Serina-Treonina Quinasas/genética , Repeticiones de Trinucleótidos
6.
J Biol Chem ; 286(39): 34224-33, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21832083

RESUMEN

Muscleblind-like 1 (MBNL1) is a splicing factor whose improper cellular localization is a central component of myotonic dystrophy. In myotonic dystrophy, the lack of properly localized MBNL1 leads to missplicing of many pre-mRNAs. One of these events is the aberrant inclusion of exon 5 within the MBNL1 pre-mRNA. The region of the MBNL1 gene that includes exon 5 and flanking intronic sequence is highly conserved in vertebrate genomes. The 3'-end of intron 4 is non-canonical in that it contains a predicted branch point that is 141 nucleotides from the 3'-splice site and an AAG 3'-splice site. Using a minigene that includes exon 4, intron 4, exon 5, intron 5, and exon 6 of MBNL1, we showed that MBNL1 regulates inclusion of exon 5. Mapping of the intron 4 branch point confirmed that branching occurs primarily at the predicted distant branch point. Structure probing and footprinting revealed that the highly conserved region between the branch point and 3'-splice site is primarily unstructured and that MBNL1 binds within this region of the pre-mRNA. Deletion of the MBNL1 response element eliminated MBNL1 splicing regulation and led to complete inclusion of exon 5, which is consistent with the suppressive effect of MBNL1 on splicing.


Asunto(s)
Exones/fisiología , Intrones/fisiología , Precursores del ARN/biosíntesis , Sitios de Empalme de ARN/fisiología , Empalme del ARN/fisiología , Proteínas de Unión al ARN/biosíntesis , Células HeLa , Humanos , Precursores del ARN/genética , Proteínas de Unión al ARN/genética , Elementos de Respuesta/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA