RESUMEN
In utero hematopoietic cell transplantation (IUHCT) is an experimental treatment for congenital hemoglobinopathies, including Sickle cell disease and thalassemias. One of the principal advantages of IUHCT is the predisposition of the developing fetus toward immunologic tolerance. This allows for engraftment across immune barriers without immunosuppression and, potentially, decreased susceptibility to graft-versus-host disease (GVHD). We demonstrate fetal resistance to GVHD following T cell-replete allogeneic hematopoietic cell transplantation compared with the neonate. We show that this resistance is associated with elevated fetal serum interleukin-10 conducive to the induction of regulatory T cells (Tregs). Finally, we demonstrate that the adoptive transfer of Tregs from IUHCT recipients to neonates uniformly prevents GVHD, recapitulating the predisposition to tolerance observed after fetal allotransplantation. These findings demonstrate fetal resistance to GVHD following hematopoietic cell transplantation and elucidate Tregs as important contributors.
Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Humanos , Recién Nacido , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/prevención & control , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Tolerancia Inmunológica , Feto , Linfocitos T ReguladoresRESUMEN
In utero hematopoietic cell transplantation (IUHCT) has the potential to cure congenital hematologic disorders including sickle cell disease. However, the window of opportunity for IUHCT closes with the acquisition of T-cell immunity, beginning at approximately 14 weeks gestation, posing significant technical challenges and excluding from treatment fetuses evaluated after the first trimester. Here we report that regulatory T cells can promote alloengraftment and preserve allograft tolerance after the acquisition of T-cell immunity in a mouse model of late-gestation IUHCT. We show that allografts enriched with regulatory T cells harvested from either IUHCT-tolerant or naive mice engraft at 20 days post coitum (DPC) with equal frequency to unenriched allografts transplanted at 14 DPC. Long-term, multilineage donor cell chimerism was achieved in the absence of graft-versus-host disease or mortality. Decreased alloreactivity among recipient T cells was observed consistent with donor-specific tolerance. These findings suggest that donor graft enrichment with regulatory T cells could be used to successfully perform IUHCT later in gestation.