Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(23): e2314213121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805282

RESUMEN

The anterolateral system (ALS) is a major ascending pathway from the spinal cord that projects to multiple brain areas and underlies the perception of pain, itch, and skin temperature. Despite its importance, our understanding of this system has been hampered by the considerable functional and molecular diversity of its constituent cells. Here, we use fluorescence-activated cell sorting to isolate ALS neurons belonging to the Phox2a-lineage for single-nucleus RNA sequencing. We reveal five distinct clusters of ALS neurons (ALS1-5) and document their laminar distribution in the spinal cord using in situ hybridization. We identify three clusters of neurons located predominantly in laminae I-III of the dorsal horn (ALS1-3) and two clusters with cell bodies located in deeper laminae (ALS4 and ALS5). Our findings reveal the transcriptional logic that underlies ALS neuronal diversity in the adult mouse and uncover the molecular identity of two previously identified classes of projection neurons. We also show that these molecular signatures can be used to target groups of ALS neurons using retrograde viral tracing. Overall, our findings provide a valuable resource for studying somatosensory biology and targeting subclasses of ALS neurons.


Asunto(s)
Proteínas de Homeodominio , Animales , Ratones , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Médula Espinal/citología , Médula Espinal/metabolismo , Neuronas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Núcleo Celular/metabolismo , Núcleo Celular/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
bioRxiv ; 2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37786726

RESUMEN

The anterolateral system (ALS) is a major ascending pathway from the spinal cord that projects to multiple brain areas and underlies the perception of pain, itch and skin temperature. Despite its importance, our understanding of this system has been hampered by the considerable functional and molecular diversity of its constituent cells. Here we use fluorescence-activated cell sorting to isolate ALS neurons belonging to the Phox2a-lineage for single-nucleus RNA sequencing. We reveal five distinct clusters of ALS neurons (ALS1-5) and document their laminar distribution in the spinal cord using in situ hybridization. We identify 3 clusters of neurons located predominantly in laminae I-III of the dorsal horn (ALS1-3) and two clusters with cell bodies located in deeper laminae (ALS4 & ALS5). Our findings reveal the transcriptional logic that underlies ALS neuronal diversity in the adult mouse and uncover the molecular identity of two previously identified classes of projection neurons. We also show that these molecular signatures can be used to target groups of ALS neurons using retrograde viral tracing. Overall, our findings provide a valuable resource for studying somatosensory biology and targeting subclasses of ALS neurons.

3.
Elife ; 122023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37490401

RESUMEN

Somatosensory information is processed by a complex network of interneurons in the spinal dorsal horn. It has been reported that inhibitory interneurons that express neuropeptide Y (NPY), either permanently or during development, suppress mechanical itch, with no effect on pain. Here, we investigate the role of interneurons that continue to express NPY (NPY-INs) in the adult mouse spinal cord. We find that chemogenetic activation of NPY-INs reduces behaviours associated with acute pain and pruritogen-evoked itch, whereas silencing them causes exaggerated itch responses that depend on cells expressing the gastrin-releasing peptide receptor. As predicted by our previous studies, silencing of another population of inhibitory interneurons (those expressing dynorphin) also increases itch, but to a lesser extent. Importantly, NPY-IN activation also reduces behavioural signs of inflammatory and neuropathic pain. These results demonstrate that NPY-INs gate pain and itch transmission at the spinal level, and therefore represent a potential treatment target for pathological pain and itch.


Asunto(s)
Neuralgia , Neuropéptido Y , Ratones , Animales , Neuropéptido Y/genética , Asta Dorsal de la Médula Espinal/patología , Prurito/patología , Interneuronas/fisiología , Médula Espinal/fisiología
4.
J Neurosci ; 42(30): 5870-5881, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35701159

RESUMEN

Following tissue injury, latent sensitization (LS) of nociceptive signaling can persist indefinitely, kept in remission by compensatory µ-opioid receptor constitutive activity (MORCA) in the dorsal horn of the spinal cord. To demonstrate LS, we conducted plantar incision in mice and then waited 3-4 weeks for hypersensitivity to resolve. At this time (remission), systemic administration of the opioid receptor antagonist/inverse agonist naltrexone reinstated mechanical and heat hypersensitivity. We first tested the hypothesis that LS extends to serotonergic neurons in the rostral ventral medulla (RVM) that convey pronociceptive input to the spinal cord. We report that in male and female mice, hypersensitivity was accompanied by increased Fos expression in serotonergic neurons of the RVM, abolished on chemogenetic inhibition of RVM 5-HT neurons, and blocked by intrathecal injection of the 5-HT3R antagonist ondansetron; the 5-HT2AR antagonist MDL-11 939 had no effect. Second, to test for MORCA, we microinjected the MOR inverse agonist d-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) and/or neutral opioid receptor antagonist 6ß-naltrexol. Intra-RVM CTAP produced mechanical hypersensitivity at both hindpaws; 6ß-naltrexol had no effect by itself, but blocked CTAP-induced hypersensitivity. This indicates that MORCA, rather than an opioid ligand-dependent mechanism, maintains LS in remission. We conclude that incision establishes LS in descending RVM 5-HT neurons that drives pronociceptive 5-HT3R signaling in the dorsal horn, and this LS is tonically opposed by MORCA in the RVM. The 5-HT3 receptor is a promising therapeutic target for the development of drugs to prevent the transition from acute to chronic postsurgical pain.SIGNIFICANCE STATEMENT Surgery leads to latent pain sensitization and a compensatory state of endogenous pain control that is maintained long after tissue healing. Here, we show that either chemogenetic inhibition of serotonergic neuron activity in the RVM or pharmacological inhibition of 5-HT3 receptor signaling at the spinal cord blocks behavioral signs of postsurgical latent sensitization. We conclude that MORCA in the RVM opposes descending serotonergic facilitation of LS and that the 5-HT3 receptor is a promising therapeutic target for the development of drugs to prevent the transition from acute to chronic postsurgical pain.


Asunto(s)
Hiperalgesia , Antagonistas de Narcóticos , Dolor Postoperatorio , Receptores Opioides mu , Analgésicos Opioides , Animales , Femenino , Hiperalgesia/metabolismo , Masculino , Bulbo Raquídeo/fisiología , Ratones , Antagonistas de Narcóticos/farmacología , Dolor Postoperatorio/metabolismo , Receptores Opioides mu/metabolismo , Serotonina/metabolismo
5.
J Neurosci Res ; 100(1): 48-65, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33957003

RESUMEN

Tissue injury induces a long-lasting latent sensitization (LS) of spinal nociceptive signaling that is kept in remission by an opposing µ-opioid receptor (MOR) constitutive activity. To test the hypothesis that supraspinal sites become engaged, we induced hindpaw inflammation, waited 3 weeks for mechanical hypersensitivity to resolve, and then injected the opioid receptor inhibitors naltrexone, CTOP or ß-funaltrexamine subcutaneously, and/or into the cerebral ventricles. Intracerebroventricular injection of each inhibitor reinstated hypersensitivity and produced somatic signs of withdrawal, indicative of LS and endogenous opioid dependence, respectively. In naïve or sham controls, systemic naloxone (3 mg/kg) produced conditioned place aversion, and systemic naltrexone (3 mg/kg) increased Fos expression in the central nucleus of the amygdala (CeA). In LS animals tested 3 weeks after plantar incision, systemic naltrexone reinstated mechanical hypersensitivity and produced an even greater increase in Fos than in sham controls, particularly in the capsular subdivision of the right CeA. One third of Fos+ profiles co-expressed protein kinase C delta (PKCδ), and 35% of PKCδ neurons co-expressed tdTomato+ in Oprm1Cre ::tdTomato transgenic mice. CeA microinjection of naltrexone (1 µg) reinstated mechanical hypersensitivity only in male mice and did not produce signs of somatic withdrawal. Intra-CeA injection of the MOR-selective inhibitor CTAP (300 ng) reinstated hypersensitivity in both male and female mice. We conclude that MORs in the capsular subdivision of the right CeA prevent the transition from acute to chronic postoperative pain.


Asunto(s)
Núcleo Amigdalino Central , Hiperalgesia , Animales , Núcleo Amigdalino Central/metabolismo , Femenino , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Hiperalgesia/prevención & control , Masculino , Ratones , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/prevención & control , Receptores Opioides , Receptores Opioides mu
6.
Neurobiol Pain ; 10: 100063, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34977426

RESUMEN

In vitro models fill a vital niche in preclinical pain research, allowing detailed study of molecular pathways, and in the case of humanised systems, providing a translational bridge between in vivo animal models and human patients. Significant advances in cellular technology available to basic pain researchers have occurred in the last decade, including developing protocols to differentiate sensory neuron-like cells from stem cells and greater access to human dorsal root ganglion tissue. In this review, we discuss the use of both models in preclinical pain research: What can a human sensory neuron in a dish tell us that rodent in vivo models cannot? How similar are these models to their endogenous counterparts, and how should we judge them? What limitations do we need to consider? How can we leverage cell models to improve translational success? In vitro human sensory neuron models equip pain researchers with a valuable tool to investigate human nociception. With continual development, consideration for their advantages and limitations, and effective integration with other experimental strategies, they could become a driving force for the pain field's advancement.

7.
Pain Rep ; 5(6): e872, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33274305

RESUMEN

INTRODUCTION: Inflammation during the neonatal period can exacerbate pain severity following reinjury in adulthood. This is driven by alterations in the postnatal development of spinal and supraspinal nociceptive circuitry. However, the contribution of alterations in peripheral nociceptor function remains underexplored. OBJECTIVES: We examined whether neonatal complete Freund's adjuvant (CFA)-induced inflammation induced or altered adult development of hyperalgesic priming (inflammation-induced plasticity in nonpeptidergic C fibres) or altered postnatal reorganization of calcitonin gene-related peptide (CGRP)-expressing and isolectin B4 (IB4)-binding C fibres in the spinal dorsal horn (DH). METHODS: After intraplantar injection of CFA at postnatal day (P) 1, we assessed mechanical thresholds in adult (P60) rats before and after intraplantar carrageenan. One week later, intraplantar PGE2-induced hypersensitivity persisting for 4 hours was deemed indicative of hyperalgesic priming. CGRP expression and IB4 binding were examined in adult rat DH after CFA. RESULTS: P1 CFA did not alter baseline adult mechanical thresholds, nor did it change the extent or duration of carrageenan-induced hypersensitivity. However, this was slower to resolve in female than in male rats. Rats that previously received carrageenan but not saline were primed, but P1 hind paw CFA did not induce or alter hyperalgesic priming responses to PGE2. In addition, CFA on P1 or P10 did not alter intensity or patterns of CGRP or IB4 staining in the adult DH. CONCLUSION: Complete Freund's adjuvant-induced inflammation during a critical period of vulnerability to injury during early postnatal development does not induce or exacerbate hyperalgesic priming or alter the broad distribution of CGRP-expressing or IB4-binding afferent terminals in the adult dorsal horn.

8.
Neurosci Lett ; 684: 187-192, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30114475

RESUMEN

The left and right central nucleus of the amygdala (CeA) exert asymmetric pronociceptive functions. In the setting of a transient noxious stimulus or persistent inflammatory pain, neuronal activity increases in the right but not left CeA, regardless of side of injury. Much less is known regarding this lateralization with respect to the behavioral manifestations of persistent neuropathic pain. To address this question, we conducted spared nerve injury (SNI) to the left or right hindlimb and then inactivated the left and/or right CeA with local microinjection of lidocaine. We evaluated injury-induced hypersensitivity with von Frey hairs (mechanical allodynia), a blunt pin (mechanical hyperalgesia), and acetone application (cold allodynia). Following left-sided SNI, inactivation of the right or bilateral CeA attenuated mechanical allodynia and hyperalgesia as well as cold hypersensitivity, while inactivation of the left CeA had no effect. Following right-sided SNI, we observed a modality-dependent effect: mechanical allodynia was attenuated by inactivation of the left but neither the right nor bilateral CeA, mechanical hyperalgesia was attenuated by left, right and bilateral intra-CeA lidocaine, and cold allodynia was unaffected. These data suggest that CeA-mediated control of neuropathic pain is not strictly limited to the right CeA as previously assumed. We conclude that functional lateralization depends on the type of pain, side of injury and the sensory modality, and that the left CeA contributes to mechanical allodynia and hyperalgesia after peripheral nerve injury to the right side of the body.


Asunto(s)
Núcleo Amigdalino Central/fisiología , Lateralidad Funcional/fisiología , Hiperalgesia/fisiopatología , Traumatismos de los Nervios Periféricos/fisiopatología , Anestésicos Locales/administración & dosificación , Animales , Núcleo Amigdalino Central/efectos de los fármacos , Hiperalgesia/tratamiento farmacológico , Lidocaína/administración & dosificación , Masculino , Microinyecciones/métodos , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA