Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Gerontol ; 72: 67-84, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26390854

RESUMEN

To expand the understanding of aging in the model organism Caenorhabditis elegans, global quantification of metabolite and protein levels in young and aged nematodes was performed using mass spectrometry. With age, there was a decreased abundance of proteins functioning in transcription termination, mRNA degradation, mRNA stability, protein synthesis, and proteasomal function. Furthermore, there was altered S-adenosyl methionine metabolism as well as a decreased abundance of the S-adenosyl methionine synthetase (SAMS-1) protein. Other aging-related changes included alterations in free fatty acid levels and composition, decreased levels of ribosomal proteins, decreased levels of NADP-dependent isocitrate dehydrogenase (IDH1), a shift in the cellular redox state, an increase in sorbitol content, alterations in free amino acid levels, and indications of altered muscle function and sarcoplasmic reticulum Ca(2+) homeostasis. There were also decreases in pyrimidine and purine metabolite levels, most markedly nitrogenous bases. Supplementing the culture medium with cytidine (a pyrimidine nucleoside) or hypoxanthine (a purine base) increased lifespan slightly, suggesting that aging-induced alterations in ribonucleotide metabolism affect lifespan. An age-related increase in body size, lipotoxicity from ectopic yolk lipoprotein accumulation, a decline in NAD(+) levels, and mitochondrial electron transport chain dysfunction may explain many of these changes. In addition, dietary restriction in aged worms resulting from sarcopenia of the pharyngeal pump likely decreases the abundance of SAMS-1, possibly leading to decreased phosphatidylcholine levels, larger lipid droplets, and ER and mitochondrial stress. The complementary use of proteomics and metabolomics yielded unique insights into the molecular processes altered with age in C. elegans.


Asunto(s)
Envejecimiento/genética , Caenorhabditis elegans/genética , Metaboloma/genética , Proteoma/genética , Animales , Homeostasis , Espectrometría de Masas , Metabolómica , Mitocondrias/metabolismo , Proteómica , Sarcopenia/metabolismo
3.
BMC Genet ; 16: 8, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25643626

RESUMEN

BACKGROUND: Little is known about the role of amino acids in cellular signaling pathways, especially as it pertains to pathways that regulate the rate of aging. However, it has been shown that methionine or tryptophan restriction extends lifespan in higher eukaryotes and increased proline or tryptophan levels increase longevity in C. elegans. In addition, leucine strongly activates the TOR signaling pathway, which when inhibited increases lifespan. RESULTS: Therefore each of the 20 proteogenic amino acids was individually supplemented to C. elegans and the effects on lifespan were determined. All amino acids except phenylalanine and aspartate extended lifespan at least to a small extent at one or more of the 3 concentrations tested with serine and proline showing the largest effects. 11 of the amino acids were less potent at higher doses, while 5 even decreased lifespan. Serine, proline, or histidine-mediated lifespan extension was greatly inhibited in eat-2 worms, a model of dietary restriction, in daf-16/FOXO, sir-2.1, rsks-1 (ribosomal S6 kinase), gcn-2, and aak-2 (AMPK) longevity pathway mutants, and in bec-1 autophagy-defective knockdown worms. 8 of 10 longevity-promoting amino acids tested activated a SKN-1/Nrf2 reporter strain, while serine and histidine were the only amino acids from those to activate a hypoxia-inducible factor (HIF-1) reporter strain. Thermotolerance was increased by proline or tryptophan supplementation, while tryptophan-mediated lifespan extension was independent of DAF-16/FOXO and SKN-1/Nrf2 signaling, but tryptophan and several related pyridine-containing compounds induced the mitochondrial unfolded protein response and an ER stress response. High glucose levels or mutations affecting electron transport chain (ETC) function inhibited amino acid-mediated lifespan extension suggesting that metabolism plays an important role. Providing many other cellular metabolites to C. elegans also increased longevity suggesting that anaplerosis of tricarboxylic acid (TCA) cycle substrates likely plays a role in lifespan extension. CONCLUSIONS: Supplementation of C. elegans with 18 of the 20 individual amino acids extended lifespan, but lifespan often decreased with increasing concentration suggesting hormesis. Lifespan extension appears to be caused by altered mitochondrial TCA cycle metabolism and respiratory substrate utilization resulting in the activation of the DAF-16/FOXO and SKN-1/Nrf2 stress response pathways.


Asunto(s)
Aminoácidos/química , Caenorhabditis elegans/fisiología , Longevidad , Aminoácidos/administración & dosificación , Animales , Autofagia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/genética , Dieta , Complejo I de Transporte de Electrón/genética , Complejo II de Transporte de Electrones/genética , Estrés del Retículo Endoplásmico , Factores de Transcripción Forkhead/metabolismo , Respuesta al Choque Térmico , Mitocondrias/metabolismo , Modelos Animales , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Aging (Albany NY) ; 6(8): 621-44, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25127866

RESUMEN

The ketone body beta-hydroxybutyrate (ßHB) is a histone deacetylase (HDAC) inhibitor and has been shown to be protective in many disease models, but its effects on aging are not well studied. Therefore we determined the effect of ßHB supplementation on the lifespan ofC. elegans nematodes. ßHB supplementation extended mean lifespan by approximately 20%. RNAi knockdown of HDACs hda-2 or hda-3 also increased lifespan and further prevented ßHB-mediated lifespan extension. ßHB-mediated lifespan extension required the DAF-16/FOXO and SKN-1/Nrf longevity pathways, the sirtuin SIR-2.1, and the AMP kinase subunit AAK-2. ßHB did not extend lifespan in a genetic model of dietary restriction indicating that ßHB is likely functioning through a similar mechanism. ßHB addition also upregulated ΒHB dehydrogenase activity and increased oxygen consumption in the worms. RNAi knockdown of F55E10.6, a short chain dehydrogenase and SKN-1 target gene, prevented the increased lifespan and ßHB dehydrogenase activity induced by ßHB addition, suggesting that F55E10.6 functions as an inducible ßHB dehydrogenase. Furthermore, ßHB supplementation increased worm thermotolerance and partially prevented glucose toxicity. It also delayed Alzheimer's amyloid-beta toxicity and decreased Parkinson's alpha-synuclein aggregation. The results indicate that D-ßHB extends lifespan through inhibiting HDACs and through the activation of conserved stress response pathways.


Asunto(s)
Ácido 3-Hidroxibutírico/farmacología , Caenorhabditis elegans/efectos de los fármacos , Longevidad/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Caenorhabditis elegans/fisiología , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Interferencia de ARN , Transducción de Señal/fisiología
5.
PLoS One ; 8(3): e58345, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23472183

RESUMEN

Malate, the tricarboxylic acid (TCA) cycle metabolite, increased lifespan and thermotolerance in the nematode C. elegans. Malate can be synthesized from fumarate by the enzyme fumarase and further oxidized to oxaloacetate by malate dehydrogenase with the accompanying reduction of NAD. Addition of fumarate also extended lifespan, but succinate addition did not, although all three intermediates activated nuclear translocation of the cytoprotective DAF-16/FOXO transcription factor and protected from paraquat-induced oxidative stress. The glyoxylate shunt, an anabolic pathway linked to lifespan extension in C. elegans, reversibly converts isocitrate and acetyl-CoA to succinate, malate, and CoA. The increased longevity provided by malate addition did not occur in fumarase (fum-1), glyoxylate shunt (gei-7), succinate dehydrogenase flavoprotein (sdha-2), or soluble fumarate reductase F48E8.3 RNAi knockdown worms. Therefore, to increase lifespan, malate must be first converted to fumarate, then fumarate must be reduced to succinate by soluble fumarate reductase and the mitochondrial electron transport chain complex II. Reduction of fumarate to succinate is coupled with the oxidation of FADH2 to FAD. Lifespan extension induced by malate depended upon the longevity regulators DAF-16 and SIR-2.1. Malate supplementation did not extend the lifespan of long-lived eat-2 mutant worms, a model of dietary restriction. Malate and fumarate addition increased oxygen consumption, but decreased ATP levels and mitochondrial membrane potential suggesting a mild uncoupling of oxidative phosphorylation. Malate also increased NADPH, NAD, and the NAD/NADH ratio. Fumarate reduction, glyoxylate shunt activity, and mild mitochondrial uncoupling likely contribute to the lifespan extension induced by malate and fumarate by increasing the amount of oxidized NAD and FAD cofactors.


Asunto(s)
Caenorhabditis elegans/fisiología , Fumaratos/farmacología , Longevidad/efectos de los fármacos , Malatos/farmacología , Transporte Activo de Núcleo Celular , Adenosina Trifosfato/metabolismo , Animales , Ácido Aspártico/farmacología , Caenorhabditis elegans/efectos de los fármacos , Ciclo del Ácido Cítrico , Glioxilatos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Potencial de la Membrana Mitocondrial , Modelos Biológicos , Oxidación-Reducción , Oxígeno/metabolismo , Consumo de Oxígeno , Interferencia de ARN
6.
Neuropharmacology ; 63(8): 1368-79, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22959965

RESUMEN

Caffeine and melatonin have been shown to protect the Swedish mutant amyloid precursor protein (APP(sw)) transgenic mouse model of Alzheimer's disease from cognitive dysfunction. But their mechanisms of action remain incompletely understood. These Alzheimer's mice have extensive mitochondrial dysfunction, which likely contributes to their cognitive decline. To further explore the mechanism through which caffeine and melatonin protect cognitive function in these mice, we monitored the function of isolated mitochondria from APP(sw) mice treated with caffeine, melatonin, or both in their drinking water for one month. Melatonin treatment yielded a near complete restoration of mitochondrial function in assays of respiratory rate, membrane potential, reactive oxygen species production, and ATP levels. Caffeine treatment by itself yielded a small increase in mitochondrial function. However, caffeine largely blocked the large enhancement of mitochondrial function provided by melatonin. Studies with N2a neuroblastoma cells stably expressing APP(sw) showed that specific inhibition of cAMP-dependent phosphodiesterase (PDE) 4 or cGMP-dependent PDE5 also blocked melatonin protection of mitochondrial function, but A(2a) and A1 adenosine receptor antagonists were without effect. Melatonin or caffeine at the concentrations used to modulate mitochondrial function in the cells had no effect on cAMP-dependent PDE activity or cellular cAMP or cGMP levels. Therefore, caffeine and increased cyclic nucleotide levels likely block melatonin signaling to mitochondria by independent mechanisms that do not involve adenosine receptor antagonism. The results of this study indicate that melatonin restores mitochondrial function much more potently than caffeine in APP(sw) transgenic mouse and cell models of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/patología , Antioxidantes/farmacología , Cafeína/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Melatonina/antagonistas & inhibidores , Melatonina/farmacología , Mitocondrias/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Células Cultivadas , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Ensayo de Inmunoadsorción Enzimática , Técnicas In Vitro , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Transgénicos , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/metabolismo , Neuronas/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transfección
7.
J Alzheimers Dis ; 26(3): 507-21, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21694462

RESUMEN

Amyloid-ß (Aß)-induced mitochondrial dysfunction may play a role in the onset and progression of Alzheimer's disease (AD). Therefore, therapeutics targeted to improve mitochondrial function could be beneficial. Plant-derived flavonoids have shown promise in improving certain AD phenotypes, but the overall mechanism of action(s) through which flavonoids protect from AD is still unknown. To identify flavonoids and other natural products that may correct amyloid-induced mitochondrial dysfunction, 25 natural products were screened for their ability to restore altered mitochondrial membrane potential (MMP), reactive oxygen species (ROS) production, or ATP levels in neuroblastoma cells expressing mutant amyloid-ß protein precursor (AßPP). Epigallocatechin-3-gallate (EGCG) and luteolin were identified as the top two mitochondrial restorative compounds from the in vitro screen. EGCG was further tested in vivo to determine its effects on brain mitochondrial function in an AßPP/PS-1 (presenilin 1) double mutant transgenic mouse model of AD. EGCG treatment restored mitochondrial respiratory rates, MMP, ROS production, and ATP levels by 50 to 85% in mitochondria isolated from the hippocampus, cortex, and striatum. The results of this study lend further credence to the notion that EGCG and other flavonoids, such as luteolin, are 'multipotent therapeutic agents' that not only reduce toxic levels of brain Aß, but also hold the potential to protect neuronal mitochondrial function in AD.


Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/toxicidad , Catequina/análogos & derivados , Flavonoides/farmacología , Enfermedades Mitocondriales/inducido químicamente , Enfermedades Mitocondriales/prevención & control , Adenosina Trifosfato/metabolismo , Péptidos beta-Amiloides/biosíntesis , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Western Blotting , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Catequina/farmacología , Línea Celular Tumoral , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Ensayo de Inmunoadsorción Enzimática , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
8.
J Pineal Res ; 51(1): 75-86, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21355879

RESUMEN

Mitochondrial dysfunction is a hallmark of Alzheimer's disease (AD) and is observed in mutant amyloid precursor protein (APP) transgenic mouse models of familial AD. Melatonin is a potent antioxidant, can prevent toxic aggregation of Alzheimer's beta-amyloid (Aß) peptide and, when taken long term, can protect against cognitive deficits in APP transgenic mice. To study the effects of melatonin on brain mitochondrial function in an AD model, APP/PS1 transgenic mice were treated for 1 month with melatonin. Analysis of isolated brain mitochondria from mice indicated that melatonin treatment decreased mitochondrial Aß levels by two- to fourfold in different brain regions. This was accompanied by a near complete restoration of mitochondrial respiratory rates, membrane potential, and ATP levels in isolated mitochondria from the hippocampus, cortex, or striatum. When isolated mitochondria from untreated young mice were given melatonin, a slight increase in respiratory rate was observed. No such effect was observed in mitochondria from aged mice. In APP-expressing neuroblastoma cells in culture, mitochondrial function was restored by melatonin or by the structurally related compounds indole-3-propionic acid or N(1)-acetyl-N(2)-formyl-5-methoxykynuramine. This restoration was partially blocked by melatonin receptor antagonists indicating melatonin receptor signaling is required for the full effect. Therefore, treatments that stimulate melatonin receptor signaling may be beneficial for restoring mitochondrial function in AD, and preservation of mitochondrial function may an important mechanism by which long term melatonin treatment delays cognitive dysfunction in AD mice.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Melatonina/farmacología , Mitocondrias/efectos de los fármacos , Receptores de Melatonina/metabolismo , Adenosina Trifosfato/metabolismo , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Análisis de Varianza , Animales , Encéfalo/citología , Encéfalo/metabolismo , Fraccionamiento Celular , Línea Celular Tumoral , Indoles/farmacología , Kinuramina/análogos & derivados , Kinuramina/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/metabolismo , Neuroblastoma , Propionatos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Estadísticas no Paramétricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...