Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Sci Rep ; 14(1): 10400, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710823

RESUMEN

Without the protective shielding of Earth's atmosphere, astronauts face higher doses of ionizing radiation in space, causing serious health concerns. Highly charged and high energy (HZE) particles are particularly effective in causing complex and difficult-to-repair DNA double-strand breaks compared to low linear energy transfer. Additionally, chronic cortisol exposure during spaceflight raises further concerns, although its specific impact on DNA damage and repair remains unknown. This study explorers the effect of different radiation qualities (photons, protons, carbon, and iron ions) on the DNA damage and repair of cortisol-conditioned primary human dermal fibroblasts. Besides, we introduce a new measure, the Foci-Integrated Damage Complexity Score (FIDCS), to assess DNA damage complexity by analyzing focus area and fluorescent intensity. Our results show that the FIDCS captured the DNA damage induced by different radiation qualities better than counting the number of foci, as traditionally done. Besides, using this measure, we were able to identify differences in DNA damage between cortisol-exposed cells and controls. This suggests that, besides measuring the total number of foci, considering the complexity of the DNA damage by means of the FIDCS can provide additional and, in our case, improved information when comparing different radiation qualities.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Fibroblastos , Hidrocortisona , Humanos , Fibroblastos/efectos de la radiación , Fibroblastos/metabolismo , Roturas del ADN de Doble Cadena/efectos de la radiación , Hidrocortisona/farmacología , Radiación Ionizante , Células Cultivadas , Daño del ADN
2.
Stem Cells ; 42(6): 499-508, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38525972

RESUMEN

Inter-individual variation largely influences disease susceptibility, as well as response to therapy. In a clinical context, the optimal treatment of a disease should consider inter-individual variation and formulate tailored decisions at an individual level. In recent years, emerging organoid technologies promise to capture part of an individual's phenotypic variability and prove helpful in providing clinically relevant molecular insights. Organoids are stem cell-derived 3-dimensional models that contain multiple cell types that can self-organize and give rise to complex structures mimicking the organization and functionality of the tissue of origin. Organoids therefore represent a more faithful recapitulation of the dynamics of the tissues of interest, compared to conventional monolayer cultures, thus supporting their use in evaluating disease prognosis, or as a tool to predict treatment outcomes. Additionally, the individualized nature of patient-derived organoids enables the use of autologous organoids as a source of transplantable material not limited by histocompatibility. An increasing amount of preclinical evidence has paved the way for clinical trials exploring the applications of organoid-based technologies, some of which are in phase I/II. This review focuses on the recent progress concerning the use of patient-derived organoids in personalized medicine, including (1) diagnostics and disease prognosis, (2) treatment outcome prediction to guide therapeutic advice, and (3) organoid transplantation or cell-based therapies. We discuss examples of these potential applications and the challenges associated with their future implementation.


Asunto(s)
Neoplasias , Organoides , Medicina de Precisión , Trasplante Autólogo , Humanos , Medicina de Precisión/métodos , Organoides/metabolismo , Trasplante Autólogo/métodos , Neoplasias/terapia , Neoplasias/patología , Animales
3.
bioRxiv ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38464033

RESUMEN

The salivary gland (SG) is an essential organ that secretes saliva, which supports versatile oral function throughout life, and is maintained by elusive epithelial stem and progenitor cells (SGSPC). Unfortunately, aging, drugs, autoimmune disorders, and cancer treatments can lead to salivary dysfunction and associated health consequences. Despite many ongoing therapeutic efforts to mediate those conditions, investigating human SGSPC is challenging due to lack of standardized tissue collection, limited tissue access, and inadequate purification methods. Herein, we established a diverse and clinically annotated salivary regenerative biobanking at the Mayo Clinic, optimizing viable salivary cell isolation and clonal assays in both 2D and 3D-matrigel growth environments. Our analysis identified ductal epithelial cells in vitro enriched with SGSPC expressing the CD24/EpCAM/CD49f+ and PSMA- phenotype. We identified PSMA expression as a reliable SGSPC differentiation marker. Moreover, we identified progenitor cell types with shared phenotypes exhibiting three distinct clonal patterns of salivary differentiation in a 2D environment. Leveraging innovative label-free unbiased LC-MS/MS-based single-cell proteomics, we identified 819 proteins across 71 single cell proteome datasets from purified progenitor-enriched parotid gland (PG) and sub-mandibular gland (SMG) cultures. We identified distinctive co-expression of proteins, such as KRT1/5/13/14/15/17/23/76 and 79, exclusively observed in rare, scattered salivary ductal basal cells, indicating the potential de novo source of SGSPC. We also identified an entire class of peroxiredoxin peroxidases, enriched in PG than SMG, and attendant H2O2-dependent cell proliferation in vitro suggesting a potential role for PRDX-dependent floodgate oxidative signaling in salivary homeostasis. The distinctive clinical resources and research insights presented here offer a foundation for exploring personalized regenerative medicine.

4.
Pharmaceutics ; 16(3)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38543329

RESUMEN

Head and neck cancer is a common cancer worldwide. Radiotherapy has an essential role in the treatment of head and neck cancers. After irradiation, early effects of reduced saliva flow and hampered water secretion are seen, along with cell loss and a decline in amylase production. Currently, there is no curative treatment for radiation-induced hyposalivation/xerostomia. This study aimed to develop and optimize a validated manufacturing process for salivary gland organoid cells containing stem/progenitor cells using salivary gland patient biopsies as a starting material. The manufacturing process should comply with GMP requirements to ensure clinical applicability. A laboratory-scale process was further developed into a good manufacturing practice (GMP) process. Clinical-grade batches complying with set acceptance and stability criteria were manufactured. The results showed that the manufactured salivary gland-derived cells were able to self-renew, differentiate, and show functionality. This study describes the optimization of an innovative and promising novel cell-based therapy.

5.
Radiother Oncol ; 193: 110117, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38453539

RESUMEN

BACKGROUND AND PURPOSE: Although proton therapy is increasingly being used in the treatment of paediatric and adult brain tumours, there are still uncertainties surrounding the biological effect of protons on the normal brain. Microglia, the brain-resident macrophages, have been shown to play a role in the development of radiation-induced neurotoxicity. However, their molecular and hence functional response to proton irradiation remains unknown. This study investigates the effect of protons on microglia by comparing the effect of photons and protons as well as the influence of age and different irradiated volumes. MATERIALS AND METHODS: Rats were irradiated with 14 Gy to the whole brain with photons (X-rays), plateau protons, spread-out Bragg peak (SOBP) protons or to 50 % anterior, or 50 % posterior brain sub-volumes with plateau protons. RNA sequencing, validation of microglial priming gene expression using qPCR and high-content imaging analysis of microglial morphology were performed in the cortex at 12 weeks post irradiation. RESULTS: Photons and plateau protons induced a shared transcriptomic response associated with neuroinflammation. This response was associated with a similar microglial priming gene expression signature and distribution of microglial morphologies. Expression of the priming gene signature was less pronounced in juvenile rats compared to adults and slightly increased in rats irradiated with SOBP protons. High-precision partial brain irradiation with protons induced a local microglial priming response and morphological changes. CONCLUSION: Overall, our data indicate that the brain responds in a similar manner to photons and plateau protons with a shared local upregulation of microglial priming-associated genes, potentially enhancing the immune response to subsequent inflammatory challenges.


Asunto(s)
Terapia de Protones , Humanos , Niño , Ratas , Animales , Protones , Microglía , Relación Dosis-Respuesta en la Radiación , Rayos X
6.
Cell Rep ; 43(2): 113764, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38358885

RESUMEN

Over half of patients with brain tumors experience debilitating and often progressive cognitive decline after radiotherapy treatment. Microglia, the resident macrophages in the brain, have been implicated in this decline. In response to various insults, microglia can develop innate immune memory (IIM), which can either enhance (priming or training) or repress (tolerance) the response to subsequent inflammatory challenges. Here, we investigate whether radiation affects the IIM of microglia by irradiating the brains of rats and later exposing them to a secondary inflammatory stimulus. Comparative transcriptomic profiling and protein validation of microglia isolated from irradiated rats show a stronger immune response to a secondary inflammatory insult, demonstrating that radiation can lead to long-lasting molecular reprogramming of microglia. Transcriptomic analysis of postmortem normal-appearing non-tumor brain tissue of patients with glioblastoma indicates that radiation-induced microglial priming is likely conserved in humans. Targeting microglial priming or avoiding further inflammatory insults could decrease radiotherapy-induced neurotoxicity.


Asunto(s)
Encéfalo , Microglía , Humanos , Ratas , Animales , Microglía/metabolismo , Inmunidad Innata
7.
Radiother Oncol ; 190: 110028, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38007043

RESUMEN

BACKGROUND AND PURPOSE: Patients undergoing radiotherapy for head and neck cancer often experience a decline in their quality of life due to the co-irradiation of salivary glands. Radiation-induced cellular senescence is a key factor contributing to salivary gland dysfunction. Interestingly, mitochondrial dysfunction and cellular senescence have been reported to be strongly interconnected and thus implicated in several aging-related diseases. This study aims to investigate the role of mitochondrial dysfunction in senescence induction in salivary gland stem/progenitor cells after irradiation. MATERIALS AND METHODS: A dose of 7 Gy photons was used to irradiate mouse salivary gland organoids. Senescent markers and mitochondrial function were assessed using rt-qPCR, western blot analysis, SA-ß-Gal staining and flow cytometry analysis. Mitochondrial dynamics-related proteins were detected by western blot analysis while Mdivi-1 and MFI8 were used to modulate the mitochondrial fission process. To induce mitophagy, organoids were treated with Urolithin A and PMI and subsequently stem/progenitor cell self-renewal capacity was assessed as organoid forming efficiency. RESULTS: Irradiation led to increased senescence and accumulation of dysfunctional mitochondria. This was accompanied by a strong downregulation of mitochondrial fission-related proteins and mitophagy-related genes. After irradiation, treatment with the mitophagy inducer Urolithin A attenuated the senescent phenotype and improved organoid growth and stem/progenitor cell self-renewal capacity. CONCLUSION: This study shows the important interplay between senescence and mitochondrial dysfunction after irradiation. Importantly, activation of mitophagy improved salivary gland stem/progenitor cell function thereby providing a novel therapeutic strategy to restore the regenerative capacity of salivary glands following irradiation.


Asunto(s)
Enfermedades Mitocondriales , Calidad de Vida , Animales , Ratones , Senescencia Celular/efectos de la radiación , Enfermedades Mitocondriales/metabolismo , Mitofagia , Glándulas Salivales , Células Madre/efectos de la radiación
9.
Artículo en Inglés | MEDLINE | ID: mdl-38017325

RESUMEN

PURPOSE: Multifocal disease in PTC is associated with an increased recurrence rate. Multifocal disease (MD) is underdiagnosed with the current gold standard of pre-operative ultrasound staging. Here, we evaluate the use of EMI-137 targeted molecular fluorescence-guided imaging (MFGI) and spectroscopy as a tool for the intra-operative detection of uni- and multifocal papillary thyroid cancer (PTC) aiming to improve disease staging and treatment selection. METHODS: A phase-1 study (NCT03470259) with EMI-137 was conducted to evaluate the possibility of detecting PTC using MFGI and quantitative fiber-optic spectroscopy. RESULTS: Fourteen patients underwent hemi- or total thyroidectomy (TTX) after administration of 0.09 mg/kg (n = 1), 0.13 mg/kg (n = 8), or 0.18 mg/kg (n = 5) EMI-137. Both MFGI and spectroscopy could differentiate PTC from healthy thyroid tissue after administration of EMI-137, which binds selectively to MET in PTC. 0.13 mg/kg was the lowest dosage EMI-137 that allowed for differentiation between PTC and healthy thyroid tissue. The smallest PTC focus detected by MFGI was 1.4 mm. MFGI restaged 80% of patients from unifocal to multifocal PTC compared to ultrasound. CONCLUSION: EMI-137-guided MFGI and spectroscopy can be used to detect multifocal PTC. This may improve disease staging and treatment selection between hemi- and total thyroidectomy by better differentiation between unifocal and multifocal disease. TRIAL REGISTRATION: NCT03470259.

11.
Phys Med Biol ; 68(6)2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-36584393

RESUMEN

This Roadmap paper covers the field of precision preclinical x-ray radiation studies in animal models. It is mostly focused on models for cancer and normal tissue response to radiation, but also discusses other disease models. The recent technological evolution in imaging, irradiation, dosimetry and monitoring that have empowered these kinds of studies is discussed, and many developments in the near future are outlined. Finally, clinical translation and reverse translation are discussed.


Asunto(s)
Radiometría , Animales , Rayos X , Radiometría/métodos , Radiografía , Modelos Animales , Fantasmas de Imagen
16.
Tissue Eng Part A ; 28(11-12): 500-510, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35262402

RESUMEN

The incidence of treatment of thyroid disease and consequential hypothyroidism has been increasing over the past few years. To maintain adequate thyroid hormone levels, these patients require daily supplementation with levothyroxine for the rest of their lives. However, a large part of these patients experiences difficulties due to the medication, which causes a decrease in their quality of life. Regenerative medicine through tissue engineering could provide a potential therapy by establishing tissue engineering models, such as those employing thyroid-derived organoids. The development of such treatment options may replace the need for additional hormonal replacement therapy. This review aims to highlight the current knowledge on thyroid regenerative medicine using organoids for tissue engineering and to discuss insights into potential methods to optimize thyroid engineering culture systems. Finally, we will describe several challenges faced when utilizing these models. Impact statement Hypothyroid patients require lifelong thyroid hormone replacement. However, many of these patients experience complications due to therapy-induced symptoms, which decrease their quality of life. Using tissue-derived organoids to engineer thyroid tissue as a form of regenerative medicine may in the near future provide treatment options for hypothyroidism. Here, we present current models of thyroid organoids and thyroid engineering systems. In addition, potential insights into how these models might be optimized for future applications are discussed, and finally, some challenges that remain to be overcome are addressed.


Asunto(s)
Hipotiroidismo , Organoides , Humanos , Hipotiroidismo/tratamiento farmacológico , Calidad de Vida , Hormonas Tiroideas/farmacología , Hormonas Tiroideas/uso terapéutico , Ingeniería de Tejidos
19.
Autophagy ; 18(2): 293-308, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34009100

RESUMEN

Relatively quiescent tissues like salivary glands (SGs) respond to stimuli such as injury to expand, replace and regenerate. Resident stem/progenitor cells are key in this process because, upon activation, they possess the ability to self-renew. Macroautophagy/autophagy contributes to and regulates differentiation in adult tissues, but an important question is whether this pathway promotes stem cell self-renewal in tissues. We took advantage of a 3D organoid system that allows assessing the self-renewal of mouse SGs stem cells (SGSCs). We found that autophagy in dormant SGSCs has slower flux than self-renewing SGSCs. Importantly, autophagy enhancement upon SGSCs activation is a self-renewal feature in 3D organoid cultures and SGs regenerating in vivo. Accordingly, autophagy ablation in SGSCs inhibits self-renewal whereas pharmacological stimulation promotes self-renewal of mouse and human SGSCs. Thus, autophagy is a key pathway for self-renewal activation in low proliferative adult tissues, and its pharmacological manipulation has the potential to promote tissue regeneration.


Asunto(s)
Autofagia , Células Madre , Diferenciación Celular , Autorrenovación de las Células , Glándulas Salivales/fisiología
20.
Stem Cell Reports ; 16(4): 913-925, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33711265

RESUMEN

Total thyroidectomy as part of thyroid cancer treatment results in hypothyroidism requiring lifelong daily thyroid hormone replacement. Unbalanced hormone levels result in persistent complaints such as fatigue, constipation, and weight increase. Therefore, we aimed to investigate a patient-derived thyroid organoid model with the potential to regenerate the thyroid gland. Murine and human thyroid-derived cells were cultured as organoids capable of self-renewal and which expressed proliferation and putative stem cell and thyroid characteristics, without a change in the expression of thyroid tumor-related genes. These organoids formed thyroid-tissue-resembling structures in culture. (Xeno-)transplantation of 600,000 dispersed organoid cells underneath the kidney capsule of a hypothyroid mouse model resulted in the generation of hormone-producing thyroid-resembling follicles. This study provides evidence that thyroid-lineage-specific cells can form organoids that are able to self-renew and differentiate into functional thyroid tissue. Subsequent (xeno-)transplantation of these thyroid organoids demonstrates a proof of principle for functional miniature gland formation.


Asunto(s)
Diferenciación Celular , Organoides/citología , Glándula Tiroides/citología , Adulto , Animales , Biomarcadores de Tumor/metabolismo , Autorrenovación de las Células , Modelos Animales de Enfermedad , Humanos , Hipotiroidismo/patología , Ratones , Células Madre/citología , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...