Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Nat Cell Biol ; 26(5): 698-709, 2024 May.
Article En | MEDLINE | ID: mdl-38548890

The human neocortex has undergone strong evolutionary expansion, largely due to an increased progenitor population, the basal radial glial cells. These cells are responsible for the production of a diversity of cell types, but the successive cell fate decisions taken by individual progenitors remain unknown. Here we developed a semi-automated live/fixed correlative imaging method to map basal radial glial cell division modes in early fetal tissue and cerebral organoids. Through the live analysis of hundreds of dividing progenitors, we show that basal radial glial cells undergo abundant symmetric amplifying divisions, and frequent self-consuming direct neurogenic divisions, bypassing intermediate progenitors. These direct neurogenic divisions are more abundant in the upper part of the subventricular zone. We furthermore demonstrate asymmetric Notch activation in the self-renewing daughter cells, independently of basal fibre inheritance. Our results reveal a remarkable conservation of fate decisions in cerebral organoids, supporting their value as models of early human neurogenesis.


Cell Lineage , Neocortex , Neural Stem Cells , Neurogenesis , Organoids , Humans , Neocortex/cytology , Neocortex/embryology , Neocortex/metabolism , Organoids/cytology , Organoids/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Cell Differentiation , Ependymoglial Cells/cytology , Ependymoglial Cells/metabolism , Receptors, Notch/metabolism , Receptors, Notch/genetics , Cell Division , Cell Proliferation
2.
EMBO Rep ; 23(10): e54605, 2022 10 06.
Article En | MEDLINE | ID: mdl-35979738

Radial glial (RG) cells are the neural stem cells of the developing neocortex. Apical RG (aRG) cells can delaminate to generate basal RG (bRG) cells, a cell type associated with human brain expansion. Here, we report that aRG delamination is regulated by the post-Golgi secretory pathway. Using in situ subcellular live imaging, we show that post-Golgi transport of RAB6+ vesicles occurs toward the minus ends of microtubules and depends on dynein. We demonstrate that the apical determinant Crumbs3 (CRB3) is also transported by dynein. Double knockout of RAB6A/A' and RAB6B impairs apical localization of CRB3 and induces a retraction of aRG cell apical process, leading to delamination and ectopic division. These defects are phenocopied by knockout of the dynein activator LIS1. Overall, our results identify a RAB6-dynein-LIS1 complex for Golgi to apical surface transport in aRG cells, and highlights the role of this pathway in the maintenance of neuroepithelial integrity.


Dyneins , rab GTP-Binding Proteins , Dyneins/genetics , Dyneins/metabolism , Golgi Apparatus/metabolism , Humans , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Neurons/metabolism , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
3.
Nat Commun ; 13(1): 16, 2022 01 10.
Article En | MEDLINE | ID: mdl-35013230

Primary microcephaly and megalencephaly are severe brain malformations defined by reduced and increased brain size, respectively. Whether these two pathologies arise from related alterations at the molecular level is unclear. Microcephaly has been largely associated with centrosomal defects, leading to cell death. Here, we investigate the consequences of WDR81 loss of function, which causes severe microcephaly in patients. We show that WDR81 regulates endosomal trafficking of EGFR and that loss of function leads to reduced MAP kinase pathway activation. Mouse radial glial progenitor cells knocked-out for WDR81 exhibit reduced proliferation rate, subsequently leading to reduced brain size. These proliferation defects are rescued in vivo by expressing a megalencephaly-causing mutant form of Cyclin D2. Our results identify the endosomal machinery as an important regulator of proliferation rates and brain growth, demonstrating that microcephaly and megalencephaly can be caused by opposite effects on the proliferation rate of radial glial progenitors.


Cell Proliferation , Microcephaly , Nerve Tissue Proteins/metabolism , Neural Stem Cells/metabolism , Transport Vesicles , Animals , Brain/embryology , Brain/metabolism , Cells, Cultured , Endosomes/metabolism , Green Fluorescent Proteins/metabolism , Humans , MAP Kinase Signaling System , Megalencephaly/etiology , Megalencephaly/metabolism , Megalencephaly/pathology , Mice , Microcephaly/etiology , Microcephaly/metabolism , Microcephaly/pathology , Nervous System Malformations/etiology , Nervous System Malformations/metabolism , Nervous System Malformations/pathology , Neuroglia/metabolism , Protein Transport/physiology , Transport Vesicles/metabolism , Transport Vesicles/pathology
4.
Nat Commun ; 12(1): 6298, 2021 11 02.
Article En | MEDLINE | ID: mdl-34728600

Basal progenitors (BPs), including intermediate progenitors and basal radial glia, are generated from apical radial glia and are enriched in gyrencephalic species like humans, contributing to neuronal expansion. Shortly after generation, BPs delaminate towards the subventricular zone, where they further proliferate before differentiation. Gene expression alterations involved in BP delamination and function in humans are poorly understood. Here, we study the role of LGALS3BP, so far known as a cancer biomarker, which is a secreted protein enriched in human neural progenitors (NPCs). We show that individuals with LGALS3BP de novo variants exhibit altered local gyrification, sulcal depth, surface area and thickness in their cortex. Additionally, using cerebral organoids, human fetal tissues and mice, we show that LGALS3BP regulates the position of NPCs. Single-cell RNA-sequencing and proteomics reveal that LGALS3BP-mediated mechanisms involve the extracellular matrix in NPCs' anchoring and migration within the human brain. We propose that its temporal expression influences NPCs' delamination, corticogenesis and gyrification extrinsically.


Antigens, Neoplasm/metabolism , Biomarkers, Tumor/metabolism , Cerebral Cortex/cytology , Extracellular Vesicles/metabolism , Induced Pluripotent Stem Cells/cytology , Neocortex/cytology , Neural Stem Cells/cytology , Neuroglia/metabolism , Animals , Cell Differentiation , Cerebral Cortex/metabolism , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Lateral Ventricles/cytology , Lateral Ventricles/metabolism , Mice , Mice, Inbred C57BL , Models, Animal , Neocortex/metabolism , Neural Stem Cells/metabolism
5.
J Cell Biol ; 220(8)2021 08 02.
Article En | MEDLINE | ID: mdl-34019079

Neurons of the neocortex are generated by stem cells called radial glial cells. These polarized cells extend a short apical process toward the ventricular surface and a long basal fiber that acts as a scaffold for neuronal migration. How the microtubule cytoskeleton is organized in these cells to support long-range transport is unknown. Using subcellular live imaging within brain tissue, we show that microtubules in the apical process uniformly emanate for the pericentrosomal region, while microtubules in the basal fiber display a mixed polarity, reminiscent of the mammalian dendrite. We identify acentrosomal microtubule organizing centers localized in varicosities of the basal fiber. CAMSAP family members accumulate in these varicosities, where they control microtubule growth. Double knockdown of CAMSAP1 and 2 leads to a destabilization of the entire basal process. Finally, using live imaging of human fetal cortex, we reveal that this organization is conserved in basal radial glial cells, a related progenitor cell population associated with human brain size expansion.


Ependymoglial Cells/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Neocortex/metabolism , Neural Stem Cells/metabolism , Neurogenesis , Animals , Cell Lineage , Cell Movement , Gestational Age , Humans , Mice , Microscopy, Fluorescence , Microtubule-Associated Proteins/genetics , Microtubules/genetics , Neocortex/embryology , Signal Transduction , Time Factors , Time-Lapse Imaging
6.
EBioMedicine ; 10: 71-6, 2016 Aug.
Article En | MEDLINE | ID: mdl-27453325

The recent Zika outbreak in South America and French Polynesia was associated with an epidemic of microcephaly, a disease characterized by a reduced size of the cerebral cortex. Other members of the Flavivirus genus, including West Nile virus (WNV), can cause encephalitis but were not demonstrated to cause microcephaly. It remains unclear whether Zika virus (ZIKV) and other flaviviruses may infect different cell populations in the developing neocortex and lead to distinct developmental defects. Here, we describe an assay to infect mouse E15 embryonic brain slices with ZIKV, WNV and dengue virus serotype 4 (DENV-4). We show that this tissue is able to support viral replication of ZIKV and WNV, but not DENV-4. Cell fate analysis reveals a remarkable tropism of ZIKV infection for neural stem cells. Closely related WNV displays a very different tropism of infection, with a bias towards neurons. We further show that ZIKV infection, but not WNV infection, impairs cell cycle progression of neural stem cells. Both viruses inhibited apoptosis at early stages of infection. This work establishes a powerful comparative approach to identify ZIKV-specific alterations in the developing neocortex and reveals specific preferential infection of neural stem cells by ZIKV.


Flavivirus/physiology , Neocortex/cytology , Neocortex/virology , Neural Stem Cells/virology , Viral Tropism , Zika Virus Infection/virology , Zika Virus/physiology , Animals , Apoptosis , Cell Cycle , Disease Models, Animal , Flavivirus/classification , Mice , Phylogeny , Vero Cells
...