Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dent Mater ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38908960

RESUMEN

OBJECTIVES: Silicon-releasing biomaterials are widely used in the field of dentistry. However, unlike bone, very little is known about the role of silicon on dental tissue formation and repair. This study investigates the influence of silicic acid on the survival, differentiation and mineralizing ability of human dental pulp stem cells (hDPSCs) in 3D pulp-like environments METHODS: Dense type I collagen hydrogels seeded with hDPSCs were cultured over 4 weeks in the presence of silicic acid at physiological (10 µM) and supraphysiological (100 µM) concentrations. Cell viability and proliferation were studied by Alamar Blue and live/dead staining. The collagen network was investigated using second harmonic generation imaging. Mineral deposition was monitored by histology and scanning electron microscopy. Gene expression of mineralization- and matrix remodeling-associated proteins was studied by qPCR. RESULTS: Presence of silicic acid did not show any significant influence on cell survival, metabolic activity and gene expression of key mineralization-related proteins (ALP, OCN, BSP). However, it induced enhanced cell clustering and delayed expression of matrix remodeling-associated proteins (MMP13, Col I). OPN expression and mineral deposition were inhibited at 100 µM. It could be inferred that silicic acid has no direct cellular effect but rather interacts with the collagen network, leading to a modification of the cell-matrix interface. SIGNIFICANCE: Our results offer advanced insights on the possible role of silicic acid, as released by pulp capping calcium silicates biomaterials, in reparative dentine formation. More globally, these results interrogate the possible role of Si in pulp pathophysiology.

2.
Gels ; 10(2)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38391460

RESUMEN

Since their first description nearly 20 years ago, dense collagen hydrogels obtained by plastic compression have become popular scaffolds in tissue engineering. In particular, when seeded with dental pulp stem cells, they have demonstrated a great in vivo potential in cranial bone repair. Here, we investigated how physico-chemical and cell-seeding conditions could influence the formation and in vitro mineralization of these cellularized scaffolds. A qualitative assessment demonstrated that the gel stability before and after compression was highly sensitive to the conditions of fibrillogenesis, especially initial acid acetic and buffer concentrations. Gels with similar rheological properties but different fibrillar structures that exhibited different stabilities when used for the 3D culture of Stem cells from Human Exfoliated Deciduous teeth (SHEDs) could be prepared. Finally, in our optimal physico-chemical conditions, mineralization could be achieved only using human dental pulp stem cells (hDPSCs) at a high cell density. These results highlight the key role of fibrillogenic conditions and cell type/density on the bone repair potential of cell-laden plastically compressed collagen hydrogels.

3.
Soft Matter ; 19(46): 9027-9035, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37971365

RESUMEN

Collagen/hyaluronan hydrogels with physical properties well suited for biomedical applications are challenging to synthesize due to the formation of polyionic complexes (PICs). A systematic physicochemical study was thus performed to determine novel conditions to inhibit the formation of collagen/hyaluronan PICs and obtain composite hydrogels with high physical properties. Using a range of pH from 1 to 5.5 and the addition of NaCl, type I collagen and tyramine-substituted hyaluronic acid (THA) solutions were mixed and analyzed by cryo-scanning electron microscopy and ATR-FTIR. PIC formation was inhibited at pH 1 without salt and at pH 2.5 and 5.5 in the presence of 400 mM NaCl. Interestingly, collagen fibrils were observed in solution at pH 5.5 before mixing with THA. After collagen gelling by pH increase, a homogeneous hydrogel consisting of collagen fibrils was only observed when PICs were inhibited. Then, the THA gelling performed by photo-crosslinking increased the rheological properties by four when hydrogels were formed with collagen/THA mixtures at pH 1 or 5.5 with salt. Taken together, these results show that a pH of 5.5, close to the collagen isoelectric point, enables the formation of collagen fibrils in solution, inhibits the PICs formation, and allows the formation of homogenous collagen/THA composite hydrogels compatible with cell survival.


Asunto(s)
Ácido Hialurónico , Hidrogeles , Ácido Hialurónico/química , Punto Isoeléctrico , Hidrogeles/química , Cloruro de Sodio , Colágeno/química
4.
Acta Biomater ; 169: 155-167, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37574156

RESUMEN

Developmental Defects of Enamel (DDE) such as Dental Fluorosis (DF) and Molar Incisor Hypomineralization (MIH) are a major public health problem. Their clinical aspects are extremely variable, challenging their early and specific diagnosis and hindering progresses in restorative treatments. Here, a combination of macro-, micro- and nano-scale structural and chemical methods, including, among others, Atom Probe Tomography recently applied on tooth enamel, were used to study and compare MIH, DF and healthy teeth from 89 patients. Globally, we show that DF is characterized by an homogenous loss of mineral content and crystallinity mainly disrupting outside layer of enamel, whereas MIH is associated with localized defects in the depth of enamel where crystalline mineral particles are embedded in an organic phase. Only minor differences in elemental composition of the mineral phase could be detected at the nanoscale such as increased F and Fe content in both severe DDE. We demonstrate that an improved digital color measurement of clinical relevance can discriminate between DF and MIH lesions, both in mild and severe forms. Such discriminating ability was discussed in the light of enamel composition and structure, especially its microstructure, organics presence and metal content (Fe, Zn). Our results offer additional insights on DDE characterization and pathogenesis, highlight the potentiality of colorimetric measurements in their clinical diagnosis and provide leads to improve the performance of minimally invasive restorative strategies. STATEMENT OF SIGNIFICANCE: Developmental Defects of Enamel (DDE) are associated to caries and tooth loose affecting billions of people worldwide. Their precise characterization for adapted minimally invasive care with optimized materials is highly expected. Here In this study, first we propose the use of color parameters measured by a spectrophotometer as a means of differential clinical diagnosis. Second, we have used state-of-the-art techniques to systematically characterize the structure, chemical composition and mechanical optical properties of dental enamel teeth affected by two major DDE, Dental Fluorosis (DF) or Molar Incisor Hypomineralization (MIH). We evidence specific enamel structural and optical features for DF and MIH while chemical modifications of the mineral nanocrystals were mostly correlated with lesion severity. Our results pave the way of the concept of personalized dentistry. In the light of our results, we propose a new means of clinical diagnosis for an adapted and improved restoration protocol for these patients.


Asunto(s)
Defectos del Desarrollo del Esmalte , Fluorosis Dental , Humanos , Relevancia Clínica , Fluorosis Dental/diagnóstico , Fluorosis Dental/terapia , Fluorosis Dental/patología , Incisivo , Minerales , Prevalencia
5.
Gels ; 9(7)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37504397

RESUMEN

Type I collagen and chitosan are two of the main biological macromolecules used to design scaffolds for tissue engineering. The former has the benefits of being biocompatible and provides biochemical cues for cell adhesion, proliferation and differentiation. However, collagen hydrogels usually exhibit poor mechanical properties and are difficult to functionalize. Chitosan is also often biocompatible, but is much more versatile in terms of structure and chemistry. Although it does have important biological properties, it is not a good substrate for mammalian cells. Combining of these two biomacromolecules is therefore a strategy of choice for the preparation of interesting biomaterials. The aim of this review is to describe the different protocols available to prepare Type I collagen-chitosan hydrogels for the purpose of presenting their physical and chemical properties and highlighting the benefits of mixed hydrogels over single-macromolecule ones. A critical discussion of the literature is provided to point out the poor understanding of chitosan-type I collagen interactions, in particular due to the lack of systematic studies addressing the effect of chitosan characteristics.

6.
Nanomaterials (Basel) ; 12(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36296776

RESUMEN

Plant-derived natural bioactive molecules are of great therapeutic potential but, so far, their application in nanomedicine has scarcely been studied. This work aimed at comparing two methodologies, i.e., adsorption and in situ incorporation, to prepare hybrid polyphenol/hydroxyapatite nanoparticles. Two flavonoids, baicalin and its aglycone derivative baicalein, and two phenolic acids derived from caffeic acid, rosmarinic and chlorogenic acids, were studied. Adsorption of these polyphenols on pre-formed hydroxyapatite nanoparticles did not modify particle size or shape and loading was less than 10% (w/w). In contrast, presence of polyphenols during the synthesis of nanoparticles significantly impacted and sometimes fully inhibited hydroxyapatite formation but recovered particles could exhibit higher loadings. For most hybrid particles, release profiles consisted of a 24 h burst effect followed by a slow release over 2 weeks. Antioxidant properties of the polyphenols were preserved after adsorption but not when incorporated in situ. These results provide fruitful clues for the valorization of natural bioactive molecules in nanomedicine.

7.
Ann N Y Acad Sci ; 1516(1): 197-211, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35902997

RESUMEN

In epithelia, claudin proteins are important components of the tight junctions as they determine the permeability and specificity to ions of the paracellular pathway. Mutations in CLDN10 cause the rare autosomal recessive HELIX syndrome (Hypohidrosis, Electrolyte imbalance, Lacrimal gland dysfunction, Ichthyosis, and Xerostomia), in which patients display severe enamel wear. Here, we assess whether this enamel wear is caused by an innate fragility directly related to claudin-10 deficiency in addition to xerostomia. A third molar collected from a female HELIX patient was analyzed by a combination of microanatomical and physicochemical approaches (i.e., electron microscopy, elemental mapping, Raman microspectroscopy, and synchrotron-based X-ray fluorescence). The enamel morphology, formation time, organization, and microstructure appeared to be within the natural variability. However, we identified accentuated strontium variations within the HELIX enamel, with alternating enrichments and depletions following the direction of the periodical striae of Retzius. These markings were also present in dentin. These data suggest that the enamel wear associated with HELIX may not be related to a disruption of enamel microstructure but rather to xerostomia. However, the occurrence of events of strontium variations within dental tissues might indicate repeated episodes of worsening of the renal dysfunction that may require further investigations.


Asunto(s)
Amelogénesis , Xerostomía , Claudina-3 , Claudina-4 , Claudinas/metabolismo , Electrólitos , Femenino , Humanos , Estroncio , Uniones Estrechas/metabolismo
8.
ACS Appl Bio Mater ; 5(6): 2556-2566, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35537179

RESUMEN

Silk from Bombyx mori is one of the most exciting materials in nature. The apparently simple arrangement of its two major components─two parallel filaments of silk fibroin (SF) coated by a common sericin (SS) sheath─provides a combination of mechanical and surface properties that can protect the moth during its most vulnerable phase, the pupal stage. Here, we recapitulate the topology of native silk fibers but shape them into three-dimensional porous constructs using an unprecedented design strategy. We demonstrate, for the first time, the potential of these macroporous silk foams as dermal patches for wound protection and for the controlled delivery of Rifamycin (Rif), a model antibiotic. The method implies (i) removing SS from silk fibers; (ii) shaping SF solutions into macroporous foams via ice-templating; (iii) stabilizing the SF macroporous foam in a methanolic solution of Rif; and (iv) coating Rif-loaded SF foams with a SS sheath. The resulting SS@SF foams exhibit water wicking capacity and accommodate up to ∼20% deformation without detaching from a skin model. The antibacterial behavior of Rif-loaded SS@SF foams against Staphylococcus aureus on agar plates outperforms that of SF foams (>1 week and 4 days, respectively). The reassembly of natural materials as macroporous foams─illustrated here for the reconstruction of silk-based materials─can be extended to other multicomponent natural materials and may play an important role in applications where controlled release of molecules and fluid transport are pivotal.


Asunto(s)
Fibroínas , Sericinas , Animales , Antibacterianos/farmacología , Biomimética , Hielo , Seda
9.
Molecules ; 27(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35408498

RESUMEN

Fibrin-Type I collagen composite gels have been widely studied as biomaterials, in which both networks are usually formed simultaneously at a neutral pH. Here, we describe a new protocol in which mixed concentrated solutions of collagen and fibrinogen were first incubated at acidic pH to induce fibrinogen gel formation, followed by a pH change to neutral inducing collagen fiber formation. Thrombin was then added to form fibrin-collagen networks. Using this protocol, mixed gels containing 20 mg.mL-1 fibrin and up to 10 mg.mL-1 collagen could be prepared. Macroscopic observations evidenced that increasing the content of collagen increases the turbidity of the gels and decreases their shrinkage during the fibrinogen-to-fibrin conversion. The presence of collagen had a minor influence on the rheological properties of the gels. Electron microscopy allowed for observation of collagen fibers within the fibrin network. 2D cultures of C2C12 myoblasts on mixed gels revealed that the presence of collagen favors proliferation and local alignment of the cells. However, it interferes with cell differentiation and myotube formation, suggesting that further control of in-gel collagen self-assembly is required to elaborate fully functional biomaterials.


Asunto(s)
Colágeno Tipo I , Fibrina , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Colágeno/química , Fibrina/química , Fibrinógeno/química , Geles/química
10.
Acta Biomater ; 140: 178-189, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34875361

RESUMEN

Scaffolds associated with different types of mesenchymal stromal stem cells (MSC) are extensively studied for the development of novel therapies for large bone defects. Moreover, monoclonal antibodies have been recently introduced for the treatment of cancer-associated bone loss and other skeletal pathologies. In particular, antibodies against sclerostin, a key player in bone remodeling regulation, have demonstrated a real benefit for treating osteoporosis but their contribution to bone tissue-engineering remains uncharted. Here, we show that combining implantation of dense collagen hydrogels hosting wild-type (WT) murine dental pulp stem cells (mDPSC) with weekly systemic injections of a sclerostin antibody (Scl-Ab) leads to increased bone regeneration within critical size calvarial defects performed in WT mice. Furthermore, we show that bone formation is equivalent in calvarial defects in WT mice implanted with Sost knock-out (KO) mDPSC and in Sost KO mice, suggesting that the implantation of sclerostin-deficient MSC similarly promotes new bone formation than complete sclerostin deficiency. Altogether, our data demonstrate that an antibody-based therapy can potentialize tissue-engineering strategies for large craniofacial bone defects and urges the need to conduct research for antibody-enabled local inhibition of sclerostin. STATEMENT OF SIGNIFICANCE: The use of monoclonal antibodies is nowadays broadly spread for the treatment of several conditions including skeletal bone diseases. However, their use to potentialize tissue engineering constructs for bone repair remains unmet. Here, we demonstrate that the neutralization of sclerostin, through either a systemic inhibition by a monoclonal antibody or the implantation of sclerostin-deficient mesenchymal stromal stem cells (MSC) directly within the defect, improves the outcome of a tissue engineering approach, combining dense collagen hydrogels and MSC derived from the dental pulp, for the treatment of large craniofacial bone defects.


Asunto(s)
Células Madre Mesenquimatosas , Ingeniería de Tejidos , Animales , Regeneración Ósea , Huesos , Ratones , Osteogénesis
11.
J Mater Chem B ; 9(47): 9624-9641, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34807217

RESUMEN

Surgical site infections constitute a major health concern that may be addressed by conferring antibacterial properties to surgical tools and medical devices via functional coatings. Bio-sourced polymers are particularly well-suited to prepare such coatings as they are usually safe and can exhibit intrinsic antibacterial properties or serve as hosts for bactericidal agents. The goal of this Review is to highlight the unique contribution of photochemistry as a green and mild methodology for the development of such bio-based antibacterial materials. Photo-generation and photo-activation of bactericidal materials are illustrated. Recent efforts and current challenges to optimize the sustainability of the process, improve the safety of the materials and extend these strategies to 3D biomaterials are also emphasized.


Asunto(s)
Antibacterianos/farmacología , Fotoquímica/métodos , Polímeros/farmacología , Animales , Antibacterianos/síntesis química , Antibacterianos/efectos de la radiación , Bacterias/efectos de los fármacos , Productos Biológicos/química , Productos Biológicos/efectos de la radiación , Tecnología Química Verde , Humanos , Luz , Nanopartículas/química , Nanopartículas/efectos de la radiación , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/efectos de la radiación , Polimerizacion/efectos de la radiación , Polímeros/síntesis química , Polímeros/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo
13.
Biomolecules ; 11(5)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34069793

RESUMEN

Major progress in the field of regenerative medicine is expected from the design of artificial scaffolds that mimic both the structural and functional properties of the ECM. The bionanocomposites approach is particularly well fitted to meet this challenge as it can combine ECM-based matrices and colloidal carriers of biological cues that regulate cell behavior. Here we have prepared bionanocomposites under high magnetic field from tilapia fish scale collagen and multifunctional silica nanoparticles (SiNPs). We show that scaffolding cues (collagen), multiple display of signaling peptides (SiNPs) and control over the global structuration (magnetic field) can be combined into a unique bionanocomposite for the engineering of biomaterials with improved cell performances.


Asunto(s)
Colágeno/química , Dióxido de Silicio/química , Tilapia/metabolismo , Andamios del Tejido/química , Células 3T3 , Animales , Adhesión Celular , Campos Magnéticos , Ratones , Nanocompuestos/química , Medicina Regenerativa
14.
Biomacromolecules ; 22(6): 2740-2753, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34027656

RESUMEN

Cellulose nanocrystals (CNCs) have been widely studied as fillers to form reinforced nanocomposites with a wide range of applications, including the biomedical field. Here, we evaluated the possibility to combine them with fibrinogen and obtain fibrin hydrogels with improved mechanical stability as potential cellular scaffolds. In diluted conditions at a neutral pH, it was evidenced that fibrinogen could adsorb on CNCs in a two-step process, favoring their alignment under flow. Composite hydrogels could be prepared from concentrated fibrinogen solutions and nanocrystals in amounts up to 0.3 wt %. CNCs induced a significant modification of the initial fibrin fibrillogenesis and final fibrin network structure, and storage moduli of all nanocomposites were larger than those of pure fibrin hydrogels. Moreover, optimal conditions were found that promoted muscle cell differentiation and formation of long myotubes. These results provide original insights into the interactions of CNCs with proteins with key physiological functions and offer new perspectives for the design of injectable fibrin-based formulations.


Asunto(s)
Celulosa , Nanopartículas , Fibrina , Fibras Musculares Esqueléticas , Nanogeles
15.
Adv Sci (Weinh) ; 8(7): 2004213, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33854901

RESUMEN

Associating collagen with biodegradable hydrophobic polyesters constitutes a promising method for the design of medicated biomaterials. Current collagen-polyester composite hydrogels consisting of pre-formed polymeric particles encapsulated within a low concentrated collagen hydrogel suffer from poor physical properties and low drug loading. Herein, an amphiphilic composite platform associating dense collagen hydrogels and up to 50 wt% polyesters with different hydrophobicity and chain length is developed. An original method of fabrication is disclosed based on in situ nanoprecipitation of polyesters impregnated in a pre-formed 3D dense collagen network. Composites made of poly(lactic-co-glycolic acid) (PLGA) and poly(lactic acid) (PLA) but not polycaprolactone (PCL) exhibit improved mechanical properties compared to those of pure collagen dense hydrogels while keeping a high degree of hydration. Release kinetics of spironolactone, a lipophilic steroid used as a drug model, can be tuned over one month. No cytotoxicity of the composites is observed on fibroblasts and keratinocytes. Unlike the incorporation of pre-formed particles, the new process allows for both improved physical properties of collagen hydrogels and controlled drug delivery. The ease of fabrication, wide range of accessible compositions, and positive preliminary safety evaluations of these collagen-polyesters will favor their translation into clinics in wide areas such as drug delivery and tissue engineering.


Asunto(s)
Colágeno/química , Sistemas de Liberación de Medicamentos/métodos , Hidrogeles/química , Nanoestructuras/química , Poliésteres/química , Espironolactona/farmacocinética , Tensoactivos/química , Técnicas In Vitro
16.
Mater Sci Eng C Mater Biol Appl ; 118: 111537, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33255090

RESUMEN

Aseptic loosening and bacterial infections are the two main causes of failure for metallic implants used for joint replacement. A coating that is both bioactive and possesses antimicrobial properties may address such shortcomings and improve the performance of the implant. We have sought to study the properties of combining hydroxyapatite-based nanoparticles or coatings with baicalein, a plant-extracted molecule with both antibacterial and antioxidant properties. (B-type) carbonated hydroxyapatite nanoparticles prepared by a chemical wet method could subsequently adsorbed by soaking in a baicalein solution. The amount of adsorbed baicalein was determined to be 63 mg.g-1 by thermogravimetric measurements. In a second approach, baicalein was adsorbed on a biomimetic calcium-deficient hydroxyapatite planar coating (12 µm thick) deposited on Ti6Al4V alloy from an aqueous solution of calcium, phosphate, sodium and magnesium salts. Soaking of the hydroxyapatite coated on titanium alloy in a baicalein solution induced partial dissolution/remodeling of the upper surface of the coating. However, the observed remodeling of the surface was much more pronounced in the presence of a baicalein solution, compared to pure water. The presence of adsorbed baicalein on the HAp layer, although it could not be precisely quantified, was assessed by XPS and fluorescence analysis. Planar coatings exhibited significant antibacterial properties against Staphylococcus epidermidis. Baicalein-modified nanoparticles exhibited significant antioxidant properties. These results illustrate the potential of hydroxyapatite used as a carrier for natural biologically-active molecules and also discuss the challenges associated with their applications as antibacterial agents.


Asunto(s)
Durapatita , Nanopartículas , Antibacterianos/farmacología , Antioxidantes/farmacología , Materiales Biocompatibles Revestidos/farmacología , Flavanonas , Propiedades de Superficie , Titanio
17.
Acta Biomater ; 119: 303-311, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33171314

RESUMEN

Because the positioning and clustering of biomolecules within the extracellular matrix dictates cell behaviors, the engineering of biomaterials incorporating bioactive epitopes with spatial organization tunable at the nanoscale is of primary importance. Here we used a highly modular composite approach combining peptide amphiphile (PA) nanofibers and silica nanoparticles, which are both easily functionalized with one or several bioactive signals. We show that the surface of silica nanoparticles allows the clustering of RGDS bioactive signals leading to improved adhesion and spreading of fibroblast cells on composite hydrogels at an epitope concentration much lower than in PA-only based matrices. Most importantly, by combining the two integrin-binding sequences RGDS and PHSRN on nanoparticle surfaces, we improved cell adhesion on the PA nanofiber/particle composite hydrogels, which is attributed to synergistic interactions known to be effective only for peptide intermolecular distance of ca. 5 nm. Such composites with soft and hard nanostructures offer a strategy for the design of advanced scaffolds to display multiple signals and control cell behavior.


Asunto(s)
Nanofibras , Nanopartículas , Análisis por Conglomerados , Matriz Extracelular , Ligandos
18.
Gels ; 6(4)2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33092154

RESUMEN

Type I collagen and fibrin are two essential proteins in tissue regeneration and have been widely used for the design of biomaterials. While they both form hydrogels via fibrillogenesis, they have distinct biochemical features, structural properties and biological functions which make their combination of high interest. A number of protocols to obtain such mixed gels have been described in the literature that differ in the sequence of mixing/addition of the various reagents. Experimental and modelling studies have suggested that such co-gels consist of an interpenetrated structure where the two proteins networks have local interactions only. Evidences have been accumulated that immobilized cells respond not only to the overall structure of the co-gels but can also exhibit responses specific to each of the proteins. Among the many biomedical applications of such type I collagen-fibrin mixed gels, those requiring the co-culture of two cell types with distinct affinity for these proteins, such as vascularization of tissue engineering constructs, appear particularly promising.

19.
J Phys Chem Lett ; 11(18): 7730-7738, 2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32841035

RESUMEN

Cryopreservation is the only fully established procedure to extend the lifespan of living cells and tissues, a key to activities spanning from fundamental biology to clinical practice. Despite its prevalence and impact, the central aspects of cryopreservation, such as the cell's physicochemical environment during freezing, remain elusive. Here we address that question by coupling in situ microscopic directional freezing to visualize cells and their surroundings during freezing with the freezing-medium phase diagram. We extract the freezing-medium spatial distribution in cryopreservation, providing a tool to describe the cell vicinity at any point during freezing. We show that two major events define the cells' local environment over time: the interaction with the moving ice front and the interaction with the vitreous moving front, a term we introduce here. Our correlative strategy may be applied to cells relevant to clinical research and practice and may help in the design of new cryoprotective media based on local physicochemical cues.


Asunto(s)
Rastreo Diferencial de Calorimetría , Criopreservación , Crioprotectores/química , Congelación , Saccharomyces cerevisiae/citología , Humanos
20.
Int J Biol Macromol ; 164: 1422-1431, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32735931

RESUMEN

Fibrin-based gels are used in clinics as biological glues but their application as 3D cellularized scaffolds is hindered by processing and stability issues. Silicification of fibrin networks appears as a promising strategy not only to address these limitations but also to take advantage of the bioactivity of Si. However, it raises the question of the influence of silica sources on fibrin self-assembly. Here tetraethoxysilane, aminopropyltriethoxysilane and silica nanoparticles were used to design hybrid and nanocomposite fibrin-based hydrogels. By varying the concentration in silica source, we could evidence two regimes of interactions that depend on the extent of inorganic condensation. These interactions modulated the fibrillar structure of the fibrin network from more than 500 nm to less than 100 nm. These nanofibrillar hydrogels could exhibit higher mechanical properties than pure fibrin while preserving their capacity to support proliferation of myoblasts, opening promising perspectives for the use of fibrin-silica constructs in tissue engineering.


Asunto(s)
Fibrina/química , Hidrogeles/química , Dióxido de Silicio/química , Ingeniería de Tejidos/métodos , Andamios del Tejido , Animales , Proliferación Celular/efectos de los fármacos , Dicroismo Circular , Cinética , Ratones , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Mioblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Nanopartículas/química , Nefelometría y Turbidimetría , Propilaminas/química , Reología , Silanos/química , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...