Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Anim Ecol ; 90(9): 2015-2026, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33232512

RESUMEN

While future climate scenarios predict declines in precipitations in many regions of the world, little is known of the mechanisms underlying community resilience to prolonged dry seasons, especially in 'naïve' Neotropical rainforests. Predictions of community resilience to intensifying drought are complicated by the fact that the underlying mechanisms are mediated by species' tolerance and resistance traits, as well as rescue through dispersal from source patches. We examined the contribution of in situ tolerance-resistance and immigration to community resilience, following drought events that ranged from the ambient norm to IPCC scenarios and extreme events. We used rainshelters above rainwater-filled bromeliads of French Guiana to emulate a gradient of drought intensity (from 1 to 3.6 times the current number of consecutive days without rainfall), and we analysed the post-drought dynamics of the taxonomic and functional community structure of aquatic invertebrates to these treatments when immigration is excluded (by netting bromeliads) or permitted (no nets). Drought intensity negatively affected invertebrate community resistance, but had a positive influence on community recovery during the post-drought phase. After droughts of 1 to 1.4 times the current intensities, the overall invertebrate abundance recovered within invertebrate life cycle durations (up to 2 months). Shifts in taxonomic composition were more important after longer droughts, but overall, community composition showed recovery towards baseline states. The non-random patterns of changes in functional community structure indicated that deterministic processes like environmental filtering of traits drive community re-assembly patterns after a drought event. Community resilience mostly relied on in situ tolerance-resistance traits. A rescue effect of immigration after a drought event was weak and mostly apparent under extreme droughts. Under climate change scenarios of drought intensification in Neotropical regions, community and ecosystem resilience could primarily depend on the persistence of suitable habitats and on the resistance traits of species, while metacommunity dynamics could make a minor contribution to ecosystem recovery. Climate change adaptation should thus aim at identifying and preserving local conditions that foster in situ resistance and the buffering effects of habitat features.


Asunto(s)
Sequías , Ecosistema , Animales , Cambio Climático , Emigración e Inmigración , Invertebrados
2.
Nat Commun ; 11(1): 3215, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32587246

RESUMEN

Changes in global and regional precipitation regimes are among the most pervasive components of climate change. Intensification of rainfall cycles, ranging from frequent downpours to severe droughts, could cause widespread, but largely unknown, alterations to trophic structure and ecosystem function. We conducted multi-site coordinated experiments to show how variation in the quantity and evenness of rainfall modulates trophic structure in 210 natural freshwater microcosms (tank bromeliads) across Central and South America (18°N to 29°S). The biomass of smaller organisms (detritivores) was higher under more stable hydrological conditions. Conversely, the biomass of predators was highest when rainfall was uneven, resulting in top-heavy biomass pyramids. These results illustrate how extremes of precipitation, resulting in localized droughts or flooding, can erode the base of freshwater food webs, with negative implications for the stability of trophic dynamics.


Asunto(s)
Bromelia , Ecosistema , Inundaciones , Agua Dulce , Animales , Biodiversidad , Biomasa , Cambio Climático , Sequías , Cadena Alimentaria , Hidrología , América del Sur
3.
Insect Sci ; 27(1): 122-132, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29659142

RESUMEN

Although the Neotropical territorially dominant arboreal ant Azteca chartifex Forel is very aggressive towards any intruder, its populous colonies tolerate the close presence of the fierce polistine wasp Polybia rejecta (F.). In French Guiana, 83.33% of the 48 P. rejecta nests recorded were found side by side with those of A. chartifex. This nesting association results in mutual protection from predators (i.e., the wasps protected from army ants; the ants protected from birds). We conducted field studies, laboratory-based behavioral experiments and chemical analyses to elucidate the mechanisms allowing the persistence of this association. Due to differences in the cuticular profiles of the two species, we eliminated the possibility of chemical mimicry. Also, analyses of the carton nests did not reveal traces of marking on the envelopes. Because ant forager flows were not perturbed by extracts from the wasps' Dufour's and venom glands, we rejected any hypothetical action of repulsive chemicals. Nevertheless, we noted that the wasps "scraped" the surface of the upper part of their nest envelope using their mandibles, likely removing the ants' scent trails, and an experiment showed that ant foragers were perturbed by the removal of their scent trails. This leads us to use the term "erasure hypothesis." Thus, this nesting association persists thanks to a relative tolerance by the ants towards wasp presence and the behavior of the wasps that allows them to "contain" their associated ants through the elimination of their scent trails, direct attacks, "wing-buzzing" behavior and ejecting the ants.


Asunto(s)
Hormigas/fisiología , Comportamiento de Nidificación , Avispas/fisiología , Agresión , Animales , Guyana Francesa , Territorialidad , Árboles
4.
C R Biol ; 341(3): 196-199, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29530733

RESUMEN

Cupiennius salei (Ctenidae) individuals frequently live in association with tank bromeliads, including Aechmea bracteata, in Quintana Roo (Mexico). Whereas C. salei females without egg sacs hunt over their entire host plant, females carrying egg sacs settle above the A. bracteata reservoirs they have partially sealed with silk. There they avoid predators that use sight to detect their prey, as is known for many bird species. Furthermore, if a danger is more acute, these females dive with their egg sacs into the bromeliad reservoir. An experiment showed that this is not the case for males or females without egg sacs. In addition to the likely abundance of prey found therein, the potential of diving into the tank to protect offspring may explain the close association of this spider with bromeliads. These results show that, although arboreal, C. salei evolved a protective behavior using the water of tank bromeliads to protect offspring.


Asunto(s)
Bromeliaceae/química , Arañas/clasificación , Animales , Aves , Buceo , Femenino , México , Árboles , Agua
5.
C R Biol ; 341(3): 200-207, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29567468

RESUMEN

In an inundated Mexican forest, 89 out of 92 myrmecophytic tank bromeliads (Aechmea bracteata) housed an associated ant colony: 13 sheltered Azteca serica, 43 Dolichoderus bispinosus, and 33 Neoponera villosa. Ant presence has a positive impact on the diversity of the aquatic macroinvertebrate communities (n=30 bromeliads studied). A Principal Component Analysis (PCA) showed that the presence and the species of ant are not correlated to bromeliad size, quantity of water, number of wells, filtered organic matter or incident radiation. The PCA and a generalized linear model showed that the presence of Azteca serica differed from the presence of the other two ant species or no ants in its effects on the aquatic invertebrate community (more predators). Therefore, both ant presence and species of ant affect the composition of the aquatic macroinvertebrate communities in the tanks of A. bracteata, likely due to ant deposition of feces and other waste in these tanks.


Asunto(s)
Hormigas/fisiología , Bromeliaceae/química , Animales , Bosques , Invertebrados/fisiología , México , Agua
6.
C R Biol ; 341(3): 182-188, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29478843

RESUMEN

In French Guiana, the arboreal nests of the swarm-founding social wasp Protopolybia emortualis (Polistinae) are generally found near those of the arboreal dolichoderine ant Dolichoderus bidens. These wasp nests are typically protected by an envelope, which in turn is covered by an additional carton 'shelter' with structure resembling the D. bidens nests. A few wasps constantly guard their nest to keep D. bidens workers from approaching. When alarmed by a strong disturbance, the ants invade the host tree foliage whereas the wasps retreat into their nest. Notably, there is no chemical convergence in the cuticular profiles of the wasps and ants sharing a tree. The aggressiveness of D. bidens likely protects the wasps from army ant raids, but the ants do not benefit from the presence of the wasps; therefore, this relationship corresponds to a kind of commensalism.


Asunto(s)
Hormigas/fisiología , Comportamiento de Nidificación , Avispas/fisiología , Agresión , Animales , Guyana Francesa , Simbiosis , Árboles
7.
Am Nat ; 190(5): E124-E131, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29053365

RESUMEN

The Neotropical understory plant Tachia guianensis (Gentianaceae)-known to shelter the colonies of several ant species in its hollow trunks and branches-does not provide them with food rewards (e.g., extrafloral nectar). We tested whether these ants are opportunistic nesters or whether mutualistic relationships exist as for myrmecophytes or plants sheltering ant colonies in specialized hollow structures in exchange for protection from enemies and/or nutrient provisioning (myrmecotrophy). We noted 37 ant species sheltering inside T. guianensis internodes, three of them accounting for 43.5% of the cases. They protect their host plants from leaf-cutting ant defoliation and termite damage because individuals devoid of associated ants suffered significantly more attacks. Using the stable isotope 15N, we experimentally showed that the tested ant species furnish their host plants with nutrients. Therefore, a mutualism exists. However, because it is associated with numerous ant species, T. guianensis can be considered a nonspecialized myrmecophyte.


Asunto(s)
Hormigas/fisiología , Gentianaceae/anatomía & histología , Gentianaceae/fisiología , Simbiosis , Animales , Guyana Francesa
8.
J Anim Ecol ; 85(5): 1147-60, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27120013

RESUMEN

Ecosystems are being stressed by climate change, but few studies have tested food web responses to changes in precipitation patterns and the consequences to ecosystem function. Fewer still have considered whether results from one geographic region can be applied to other regions, given the degree of community change over large biogeographic gradients. We assembled, in one field site, three types of macroinvertebrate communities within water-filled bromeliads. Two represented food webs containing both a fast filter feeder-microbial and slow detritivore energy channels found in Costa Rica and Puerto Rico, and one represented the structurally simpler food webs in French Guiana, which only contained the fast filter feeder-microbial channel. We manipulated the amount and distribution of rain entering bromeliads and examined how food web structure mediated ecosystem responses to changes in the quantity and temporal distribution of precipitation. Food web structure affected the survival of functional groups in general and ecosystem functions such as decomposition and the production of fine particulate organic matter. Ecosystem processes were more affected by decreased precipitation than were the abundance of micro-organisms and metazoans. In our experiments, the sensitivity of the ecosystem to precipitation change was primarily revealed in the food web dominated by the single filter feeder-microbial channel because other top-down and bottom-up processes were weak or absent. Our results show stronger effects of food web structure than precipitation change per se on the functioning of bromeliad ecosystems. Consequently, we predict that ecosystem function in bromeliads throughout the Americas will be more sensitive to changes in the distribution of species, rather than to the direct effects caused by changes in precipitation.


Asunto(s)
Organismos Acuáticos/fisiología , Sequías , Cadena Alimentaria , Conducta Predatoria , Lluvia , Animales , Bromeliaceae/crecimiento & desarrollo , Costa Rica , Ecosistema , Guyana Francesa , Puerto Rico
9.
PLoS One ; 10(12): e0144110, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26633187

RESUMEN

Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2 km of distance, 40 m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods.


Asunto(s)
Distribución Animal/fisiología , Artrópodos/fisiología , Biodiversidad , Ecosistema , Animales , Panamá , Filogenia , Bosque Lluvioso , Clima Tropical
10.
C R Biol ; 338(10): 688-95, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26302832

RESUMEN

In the Guianese rainforest, we examined the impact of the presence of guano in and around a bat roosting site (a cave). We used ant communities as an indicator to evaluate this impact because they occupy a central place in the functioning of tropical rainforest ecosystems and they play different roles in the food web as they can be herbivores, generalists, scavengers or predators. The ant species richness around the cave did not differ from a control sample situated 500m away. Yet, the comparison of functional groups resulted in significantly greater numbers of detritivorous fungus-growing and predatory ant colonies around the cave compared to the control, the contrary being true for nectar and honeydew feeders. The role of bats, through their guano, was shown using stable isotope analyses as we noted significantly greater δ(15)N values for the ant species captured in and around the cave compared to controls.


Asunto(s)
Hormigas/fisiología , Quirópteros/fisiología , Conducta Excretoria Animal , Distribución Animal , Animales , Hormigas/clasificación , Cuevas , Ecosistema , Heces/química , Heces/microbiología , Conducta Alimentaria , Guyana Francesa , Comportamiento de Nidificación , Ciclo del Nitrógeno , Isótopos de Nitrógeno/análisis , Conducta Predatoria , Bosque Lluvioso , Especificidad de la Especie , Orina/química
11.
Insect Sci ; 22(2): 289-94, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25813245

RESUMEN

Supercolonies of the red fire ant Solenopsis saevissima (Smith) develop in disturbed environments and likely alter the ant community in the native range of the species. For example, in French Guiana only 8 ant species were repeatedly noted as nesting in close vicinity to its mounds. Here, we verified if a shared set of biological, ecological, and behavioral traits might explain how these 8 species are able to nest in the presence of S. saevissima. We did not find this to be the case. We did find, however, that all of them are able to live in disturbed habitats. It is likely that over the course of evolution each of these species acquired the capacity to live syntopically with S. saevissima through its own set of traits, where colony size (4 species develop large colonies), cuticular compounds which do not trigger aggressiveness (6 species) and submissive behaviors (4 species) complement each other.


Asunto(s)
Hormigas/fisiología , Animales , Conducta Animal , Dominación-Subordinación , Ecosistema , Guyana Francesa , Especificidad de la Especie , Simpatría
12.
C R Biol ; 338(4): 255-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25746397

RESUMEN

We show that in French Guiana the large carton nests of Azteca chartifex, a territorially-dominant arboreal dolichoderine ant, are protected from bird attacks when this ant lives in association with Polybia rejecta, an epiponine social wasp. Because A. chartifex colonies are well known for their ability to divert army ant raids from the base of their host tree so that they protect their associated wasps from these raids, there is a reciprocal benefit for these two partners, permitting us to call this association a mutualism. We also show that P. rejecta nests are significantly less often attacked by birds than are those of two compared epiponine social wasp species. Furthermore, experimentation using a standardized protocol demonstrated the significantly higher aggressiveness of P. rejecta compared to seven other wasp species. We conclude that the efficacious protection of its associated ant nests is likely due to the extreme aggressiveness of P. rejecta.


Asunto(s)
Hormigas/fisiología , Simbiosis , Avispas/fisiología , Agresión , Animales , Aves , Guyana Francesa , Comportamiento de Nidificación , Conducta Predatoria , Árboles
13.
PLoS One ; 9(12): e114592, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25494055

RESUMEN

Tank bromeliads are good models for understanding how climate change may affect biotic associations. We studied the relationships between spiders, the epiphytic tank bromeliad, Aechmea bracteata, and its associated ants in an inundated forest in Quintana Roo, Mexico, during a drought period while, exceptionally, this forest was dry and then during the flooding that followed. We compared spider abundance and diversity between 'Aechmea-areas' and 'control-areas' of the same surface area. We recorded six spider families: the Dipluridae, Ctenidae, Salticidae, Araneidae, Tetragnathidae and Linyphiidae among which the funnel-web tarantula, Ischnothele caudata, the only Dipluridae noted, was the most abundant. During the drought period, the spiders were more numerous in the Aechmea-areas than in the control-areas, but they were not obligatorily associated with the Aechmea. During the subsequent flooding, the spiders were concentrated in the A. bracteata patches, particularly those sheltering an ant colony. Also, a kind of specificity existed between certain spider taxa and ant species, but varied between the drought period and subsequent flooding. We conclude that climatic events modulate the relationship between A. bracteata patches and their associated fauna. Tank bromeliads, previously considered only for their ecological importance in supplying food and water during drought, may also be considered refuges for spiders during flooding. More generally, tank bromeliads have an important role in preserving non-specialized fauna in inundated forests.


Asunto(s)
Hormigas/crecimiento & desarrollo , Bromeliaceae/crecimiento & desarrollo , Cambio Climático , Sequías , Inundaciones , Arañas/clasificación , Animales , Hormigas/clasificación , Biodiversidad , Clima , Bosques , México , Arañas/crecimiento & desarrollo
14.
PLoS One ; 8(8): e71735, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23977128

RESUMEN

Little is known of how linkage patterns between species change along environmental gradients. The small, spatially discrete food webs inhabiting tank-bromeliads provide an excellent opportunity to analyse patterns of community diversity and food-web topology (connectance, linkage density, nestedness) in relation to key environmental variables (habitat size, detrital resource, incident radiation) and predators:prey ratios. We sampled 365 bromeliads in a wide range of understorey environments in French Guiana and used gut contents of invertebrates to draw the corresponding 365 connectance webs. At the bromeliad scale, habitat size (water volume) determined the number of species that constitute food-web nodes, the proportion of predators, and food-web topology. The number of species as well as the proportion of predators within bromeliads declined from open to forested habitats, where the volume of water collected by bromeliads was generally lower because of rainfall interception by the canopy. A core group of microorganisms and generalist detritivores remained relatively constant across environments. This suggests that (i) a highly-connected core ensures food-web stability and key ecosystem functions across environments, and (ii) larger deviations in food-web structures can be expected following disturbance if detritivores share traits that determine responses to environmental changes. While linkage density and nestedness were lower in bromeliads in the forest than in open areas, experiments are needed to confirm a trend for lower food-web stability in the understorey of primary forests.


Asunto(s)
Bromelia/fisiología , Cadena Alimentaria , Conducta Predatoria/fisiología , Animales , Teorema de Bayes , Biodiversidad , Guyana Francesa , Geografía , Modelos Biológicos
15.
Ann Bot ; 112(5): 919-26, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23864002

RESUMEN

BACKGROUND AND AIMS: Epiphytism imposes physiological constraints resulting from the lack of access to the nutrient sources available to ground-rooted plants. A conspicuous adaptation in response to that lack is the phytotelm (plant-held waters) of tank-bromeliad species that are often nutrient-rich. Associations with terrestrial invertebrates also result in higher plant nutrient acquisition. Assuming that tank-bromeliads rely on reservoir-assisted nutrition, it was hypothesized that the dual association with mutualistic ants and the phytotelm food web provides greater nutritional benefits to the plant compared with those bromeliads involved in only one of these two associations. METHODS: Quantitative (water volume, amount of fine particulate organic matter, predator/prey ratio, algal density) and qualitative variables (ant-association and photosynthetic pathways) were compared for eight tank- and one tankless-bromeliad morphospecies from French Guiana. An analysis was also made of which of these variables affect nitrogen acquisition (leaf N and δ(15)N). KEY RESULTS: All variables were significantly different between tank-bromeliad species. Leaf N concentrations and leaf δ(15)N were both positively correlated with the presence of mutualistic ants. The amount of fine particulate organic matter and predator/prey ratio had a positive and negative effect on leaf δ(15)N, respectively. Water volume was positively correlated with leaf N concentration whereas algal density was negatively correlated. Finally, the photosynthetic pathway (C3 vs. CAM) was positively correlated with leaf N concentration with a slightly higher N concentration for C3-Tillandsioideae compared with CAM-Bromelioideae. CONCLUSIONS: The study suggests that some of the differences in N nutrition between bromeliad species can be explained by the presence of mutualistic ants. From a nutritional standpoint, it is more advantageous for a bromeliad to use myrmecotrophy via its roots than to use carnivory via its tank. The results highlight a gap in our knowledge of the reciprocal interactions between bromeliads and the various trophic levels (from bacteria to large metazoan predators) that intervene in reservoir-assisted nutrition.


Asunto(s)
Hormigas/fisiología , Bromeliaceae/fisiología , Nitrógeno/metabolismo , Agua/metabolismo , Animales , Guyana Francesa , Isótopos de Nitrógeno/análisis , Fotosíntesis , Simbiosis
16.
Science ; 338(6113): 1481-4, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23239740

RESUMEN

Most eukaryotic organisms are arthropods. Yet, their diversity in rich terrestrial ecosystems is still unknown. Here we produce tangible estimates of the total species richness of arthropods in a tropical rainforest. Using a comprehensive range of structured protocols, we sampled the phylogenetic breadth of arthropod taxa from the soil to the forest canopy in the San Lorenzo forest, Panama. We collected 6144 arthropod species from 0.48 hectare and extrapolated total species richness to larger areas on the basis of competing models. The whole 6000-hectare forest reserve most likely sustains 25,000 arthropod species. Notably, just 1 hectare of rainforest yields >60% of the arthropod biodiversity held in the wider landscape. Models based on plant diversity fitted the accumulated species richness of both herbivore and nonherbivore taxa exceptionally well. This lends credence to global estimates of arthropod biodiversity developed from plant models.


Asunto(s)
Artrópodos/anatomía & histología , Artrópodos/clasificación , Biodiversidad , Animales , Herbivoria , Lluvia , Árboles , Clima Tropical
17.
Ann Bot ; 109(1): 145-52, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21984729

RESUMEN

BACKGROUND AND AIMS: Determining the sources of variation in floral morphology is crucial to understanding the mechanisms underlying Angiosperm evolution. The selection of floral and reproductive traits is influenced by the plant's abiotic environment, florivores and pollinators. However, evidence that variations in floral traits result from mutualistic interactions with insects other than pollinators is lacking in the published literature and has rarely been investigated. We aimed to determine whether the association with either Camponotus femoratus or Pachycondyla goeldii (both involved in seed dispersal and plant protection) mediates the reproductive traits and allocation of Aechmea mertensii, an obligatory ant-garden tank-bromeliad, differently. METHODS: Floral and reproductive traits were compared between the two A. mertensii ant-gardens. The nitrogen flux from the ants to the bromeliads was investigated through experimental enrichments with stable isotopes ((15)N). KEY RESULTS: Camponotus femoratus-associated bromeliads produced inflorescences up to four times longer than did P. goeldii-associated bromeliads. Also, the numbers of flowers and fruits were close to four times higher, and the number of seeds and their mass per fruit were close to 1·5 times higher in C. femoratus than in P. goeldii-associated bromeliads. Furthermore, the (15)N-enrichment experiment showed that C. femoratus-associated bromeliads received more nitrogen from ants than did P. goeldii-associated bromeliads, with subsequent positive repercussions on floral development. Greater benefits were conferred to A. mertensii by the association with C. femoratus compared with P. goeldii ants. CONCLUSIONS: We show for the first time that mutualistic associations with ants can result in an enhanced reproductive allocation for the bromeliad A. mertensii. Nevertheless, the strength and direction of the selection of floral and fruit traits change based on the ant species and were not related to light exposure. The different activities and ecological preferences of the ants may play a contrasting role in shaping plant evolution and speciation.


Asunto(s)
Hormigas/fisiología , Bromeliaceae/fisiología , Animales , Evolución Biológica , Bromeliaceae/anatomía & histología , Bromeliaceae/genética , Flores/anatomía & histología , Guyana Francesa , Frutas/crecimiento & desarrollo , Especiación Genética , Nitrógeno/metabolismo , Polinización , Dispersión de Semillas , Semillas/crecimiento & desarrollo
18.
PLoS One ; 6(11): e27004, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22073236

RESUMEN

Establishing a direct link between climate change and fluctuations in animal populations through long-term monitoring is difficult given the paucity of baseline data. We hypothesized that social wasps are sensitive to climatic variations, and thus studied the impact of ENSO events on social wasp populations in French Guiana. We noted that during the 2000 La Niña year there was a 77.1% decrease in their nest abundance along ca. 5 km of forest edges, and that 70.5% of the species were no longer present. Two simultaneous 13-year surveys (1997-2009) confirmed the decrease in social wasps during La Niña years (2000 and 2006), while an increase occurred during the 2009 El Niño year. A 30-year weather survey showed that these phenomena corresponded to particularly high levels of rainfall, and that temperature, humidity and global solar radiation were correlated with rainfall. Using the Self-Organizing Map algorithm, we show that heavy rainfall during an entire rainy season has a negative impact on social wasps. Strong contrasts in rainfall between the dry season and the short rainy season exacerbate this effect. Social wasp populations never recovered to their pre-2000 levels. This is probably because these conditions occurred over four years; heavy rainfall during the major rainy seasons during four other years also had a detrimental effect. On the contrary, low levels of rainfall during the major rainy season in 2009 spurred an increase in social wasp populations. We conclude that recent climatic changes have likely resulted in fewer social wasp colonies because they have lowered the wasps' resistance to parasitoids and pathogens. These results imply that Neotropical social wasps can be regarded as bio-indicators because they highlight the impact of climatic changes not yet perceptible in plants and other animals.


Asunto(s)
Cambio Climático , Avispas/fisiología , Algoritmos , Animales , Guyana Francesa
19.
C R Biol ; 333(1): 35-40, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20176334

RESUMEN

After noting the forecast of a La Niña episode, associated with heavy rainfall in French Guiana, we monitored the fate of wasp nests before and during the 2006 short rainy season. The population of the most abundant epiponine wasp species, Polybia bistriata, decreased dramatically during the short rainy season (60.6% of the nests disappeared) then remained low for at least 18 months. Colonies that survived moved from the shelter of large, low leaves (a situation well adapted to the previous dry season) of the most frequent substrate tree, Clusia grandiflora (Clusiaceae), to upper leaves, better ventilated and whose orientation provides good protection from the rain. Therefore, the possibility of moving the nest higher during the first rains following the dry season seems very adaptive as colonies that do not do so are eliminated during the La Niña years, whose frequency will increase with global climate change.


Asunto(s)
Clima , Comportamiento de Nidificación/fisiología , Lluvia , Avispas/fisiología , Adaptación Biológica , Animales , Conducta Animal , Clusia , Guyana Francesa , Hojas de la Planta , Estaciones del Año , Clima Tropical
20.
C R Biol ; 332(7): 673-84, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19523607

RESUMEN

We examined the ecological impact of traditional land use by Wayana Amerindians in French Guiana using ants as bio-indicators. Ants were sampled through a rapid assessment method and the core results analyzed using Kohonen's self-organizing maps (SOM). Our sample sites included: (1) a Wayana village; (2) a cassava plantation; (3) an abandoned cassava plantation; (4) a forest fragment near the village; (5) a riparian forest; and (6) a primary terra firma forest. The ant diversity decreases according to the degree to which the habitat is disturbed. The SOM allowed us to compare the ecological succession between the six habitats. The protocol used is robust since the same conclusions were drawn using partial data.


Asunto(s)
Agricultura , Hormigas/fisiología , Indígenas Sudamericanos , Animales , Biodiversidad , Biomarcadores , Ecología , Ecosistema , Guyana Francesa , Humanos , Modelos Estadísticos , Población , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA