Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Adv Mater ; 34(21): e2201387, 2022 May.
Article En | MEDLINE | ID: mdl-35355349

Monolayer hexagonal boron nitride (hBN) has been widely considered a fundamental building block for 2D heterostructures and devices. However, the controlled and scalable synthesis of hBN and its 2D heterostructures has remained a daunting challenge. Here, an hBN/graphene (hBN/G) interface-mediated growth process for the controlled synthesis of high-quality monolayer hBN is proposed and further demonstrated. It is discovered that the in-plane hBN/G interface can be precisely controlled, enabling the scalable epitaxy of unidirectional monolayer hBN on graphene, which exhibits a uniform moiré superlattice consistent with single-domain hBN, aligned to the underlying graphene lattice. Furthermore, it is identified that the deep-ultraviolet emission at 6.12 eV stems from the 1s-exciton state of monolayer hBN with a giant renormalized direct bandgap on graphene. This work provides a viable path for the controlled synthesis of ultraclean, wafer-scale, atomically ordered 2D quantum materials, as well as the fabrication of 2D quantum electronic and optoelectronic devices.

2.
Science ; 374(6574): 1484-1487, 2021 Dec 17.
Article En | MEDLINE | ID: mdl-34914516

Topological spin textures in chiral magnets such as manganese germanide (MnGe) are of fundamental interest and may enable magnetic storage and computing technologies. Our spin-polarized scanning tunneling microscopy images of MnGe thin films reveal a variety of textures that are correlated to the atomic-scale structure. Our images indicate helical stripe domains, in contrast to bulk, and associated helimagnetic domain walls. In combination with micromagnetic modeling, we can deduce the three-dimensional (3D) orientation of the helical wave vectors, and we find that three helical domains can meet in two distinct ways to produce either a "target-like" or a "π-like" topological spin texture. The target-like texture can be reversibly manipulated through either current/voltage pulsing or applied magnetic field, which represents a promising step toward future applications.

3.
ACS Appl Mater Interfaces ; 12(8): 9896-9901, 2020 Feb 26.
Article En | MEDLINE | ID: mdl-31986007

Scanning tunneling microscopy was used to study the surfaces of 20-100 nm thick FeGe films grown by molecular beam epitaxy. An average surface lattice constant of ∼6.8 Å, in agreement with the bulk value, was observed via scanning tunneling microscopy, low energy electron diffraction, and reflection high energy electron diffraction. Each of the four possible chemical terminations in the FeGe films were identified by comparing atomic-resolution images, showing distinct contrast with simulations from density functional theory calculations. A detailed study of the atomic layering order and registry across step edges allows us to uniquely determine the grain orientation and chirality in these noncentrosymmetric films.

...