Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38338963

RESUMEN

The Mediterranean purple sea urchin Paracentrotus lividus (Lamarck 1816) is a remarkable model system for molecular, evolutionary and cell biology studies, particularly in the field of developmental biology. We sequenced the genome, performed a de novo assembly, and analysed the assembly content. The genome of P. lividus was sequenced using Illumina NextSeq 500 System (Illumina) in a 2 × 150 paired-end format. More than 30,000 open reading frames (ORFs), (more than 8000 are unique), were identified and analysed to provide molecular tools accessible for the scientific community. In particular, several genes involved in complex innate immune responses, oxidative metabolism, signal transduction, and kinome, as well as genes regulating the membrane receptors, were identified in the P. lividus genome. In this way, the employment of the Mediterranean sea urchin for investigations and comparative analyses was empowered, leading to the explanation of cis-regulatory networks and their evolution in a key developmental model occupying an important evolutionary position with respect to vertebrates and humans.


Asunto(s)
Paracentrotus , Humanos , Animales , Paracentrotus/genética , Paracentrotus/metabolismo , Inmunidad Innata , Evolución Molecular
2.
Biomedicines ; 11(12)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38137339

RESUMEN

Parkinson's disease (PD) is a multisystem and multifactorial disorder and, therefore, the application of modern genetic techniques may assist in unraveling its complex pathophysiology. We conducted a clinical-demographic evaluation of 126 patients with PD, all of whom were Caucasian and of Sicilian ancestry. DNA was extracted from the peripheral blood for each patient, followed by sequencing using a Next-Generation Sequencing system. This system was based on a custom gene panel comprising 162 genes. The sample underwent further filtering, taking into account the allele frequencies of genetic variants, their presence in the Human Gene Mutation Database, and their association in the literature with PD or other movement/neurodegenerative disorders. The largest number of variants was identified in the leucine-rich repeat kinase 2 (LRRK2) gene. However, variants in other genes, such as acid beta-glucosidase (GBA), DNA polymerase gamma catalytic subunit (POLG), and parkin RBR E3 ubiquitin protein ligase (PRKN), were also discovered. Interestingly, some of these variants had not been previously associated with PD. Enhancing our understanding of the genetic basis of PD and identifying new variants possibly linked to the disease will contribute to improved diagnostic accuracy, therapeutic developments, and prognostic insights for affected individuals.

3.
Mol Biol Rep ; 50(11): 9715-9720, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37812352

RESUMEN

BACKGROUND: Gerstmann Sträussler Scheinker (GSS) is an inherited, invariably fatal prion disease. Like other human prion diseases, GSS is caused by missense mutations in the prion protein (PrP) gene (PRNP), and by the formation and overtime accumulation of the misfolded, pathogenic scrapie PrP (PrPSc). The first mutation identified in the PRNP gene, and the one blamed as the main cause of the disease, is c.C305T:p.P102L. METHODS AND RESULTS: The Sanger sequencing method was performed on the PRNP gene for the detection of c.C305T:p.P102L mutations in a cohort of 10 subjects; moreover, a study was carried out, using Next Generation Sequencing (NGS), by sequencing a group of genes related to amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), movement disorders and dementia which show a phenotypic profile similar to that of GSS. The results obtained from the study using NGS indicate the potential role of other genetic variants which could contribute to the various GSS phenotypes. CONCLUSIONS: In conclusion, we highlight the large clinical variability in subjects presenting with GSS and p.P102L, as well as the hypothesis that the mutation in PrP codon 102 alone is not sufficient to trigger the cardinal clinical signs of the disease; furthermore, we do not exclude the possibility that further genetic variants play a decisive role in the aspects of the various phenotypes with which GSS manifests itself.


Asunto(s)
Enfermedad de Gerstmann-Straussler-Scheinker , Priones , Animales , Humanos , Enfermedad de Gerstmann-Straussler-Scheinker/diagnóstico , Enfermedad de Gerstmann-Straussler-Scheinker/genética , Enfermedad de Gerstmann-Straussler-Scheinker/metabolismo , Priones/genética , Proteínas Priónicas/genética , Mutación/genética , Secuenciación de Nucleótidos de Alto Rendimiento
4.
Int J Mol Sci ; 24(1)2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36614153

RESUMEN

Parkinson's disease (PD) is a neurodegenerative synucleinopathy that has a not yet fully understood molecular pathomechanism behind it. The role of risk genes regulated by small non-coding RNAs, or microRNAs (miRNAs), has also been highlighted in PD, where they may influence disease progression and comorbidities. In this case-control study, we analyzed miRNAs on peripheral blood mononuclear cells by means of RNA-seq in 30 participants, with the aim of identifying miRNAs differentially expressed in PD compared to age-matched healthy controls. Additionally, we investigated the pathways influenced by differentially expressed miRNAs and assessed whether a specific pathway could potentially be associated with PD susceptibility (enrichment analyses performed using the Ingenuity Pathway Analysis tools). Overall, considering that the upregulation of miRNAs might be related with the downregulation of their messenger RNA targets, and vice versa, we found several putative targets of dysregulated miRNAs (i.e., upregulated: hsa-miR-1275, hsa-miR-23a-5p, hsa-miR-432-5p, hsa-miR-4433b-3p, and hsa-miR-4443; downregulated: hsa-miR-142-5p, hsa-miR-143-3p, hsa-miR-374a-3p, hsa-miR-542-3p, and hsa-miR-99a-5p). An inverse connection between cancer and neurodegeneration, called "inverse comorbidity", has also been noted, showing that some genes or miRNAs may be expressed oppositely in neurodegenerative disorders and in some cancers. Therefore, it may be reasonable to consider these miRNAs as potential diagnostic markers and outcome measures.


Asunto(s)
MicroARNs , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Estudios de Casos y Controles , Leucocitos Mononucleares/metabolismo , MicroARNs/metabolismo , Regulación hacia Abajo/genética
5.
Mol Biol Rep ; 48(6): 5335-5338, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34184200

RESUMEN

Chromosome 21 trisomy or Down syndrome (DS) is the most common genetic cause of intellectual disability (ID). DS is also associated with hypotonia, muscle weakness, autoimmune diseases, and congenital heart disease. C-C chemokine receptor type 3 (CCR3) plays a role in inflammatory, autoimmune, and neuronal migration mechanisms. The present study aimed to evaluate the expression of the CCR3 gene by NGS and qRT-PCR in patients with DS and normal controls (NC). The CCR3 gene was over-expressed in DS patients compared to NC. These data suggest that an over-expression of the CCR3 gene is associated with the phenotype of patients with DS.


Asunto(s)
Síndrome de Down/genética , Receptores CCR3/genética , Adulto , Síndrome de Down/metabolismo , Femenino , Expresión Génica/genética , Humanos , Discapacidad Intelectual/genética , Masculino , Persona de Mediana Edad , Fenotipo , Receptores CCR3/metabolismo , Transcriptoma/genética , Trisomía
6.
Minerva Endocrinol (Torino) ; 46(4): 384-388, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33331742

RESUMEN

BACKGROUND: The etiology of azoospermia in patients with Klinefelter Syndrome (KS) is still unknown. The protein codified by the G protein-couple receptor 56 (GPR56) belongs to the adhesion family of G protein-coupled receptors (GPRs). Its mutations are involved in the pathogenesis of intellectual disability and, according to animal studies, infertility. As the expression of GPR56 in patients with KS has not been investigated so far, this study was undertaken with the purpose of evaluating its expression in peripheral blood mononuclear cells (PBMCs) of patients with KS and normal controls. METHODS: This age-matched case-control study was performed in 10 patients with KS and 10 controls. Patients and controls underwent to blood sampling for next-generation sequencing (NGS) analysis, and differentially expressed mRNAs were identified using DESeq2 v.1.12. QRT-PCR was used to validate the results obtained by NGS analysis. TaqMan Gene Expression Assay primers were used to carry out the real-time PCR analysis for GPR56. RESULTS: GPR56 was down-regulated by -2081-fold (q-value <0.05) in PBMCs of patients with KS compared to controls. NGS data were confirmed by QRT-PCR. CONCLUSIONS: The possible contribution of the GPR56 gene down-regulation in the pathogenesis of spermatogenic failure in patients with KS is worthy to be further explored.


Asunto(s)
Azoospermia , Síndrome de Klinefelter , Estudios de Casos y Controles , Regulación hacia Abajo , Humanos , Síndrome de Klinefelter/genética , Leucocitos Mononucleares
7.
Clin Genet ; 99(3): 425-429, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33236357

RESUMEN

mTOR dysregulation has been described in pathological conditions, such as cardiovascular and overgrowth disorders. Here we report on the first case of a patient with a complex congenital heart disease and an interstitial duplication in the short arm of chromosome 1, encompassing part of the mTOR gene. Our results suggest that an intragenic mTOR microduplication might play a role in the pathogenesis of non-syndromic congenital heart defects (CHDs) due to an upregulation of mTOR/Rictor and consequently an increased phosphorylation of PI3K/AKT and MEK/ERK signaling pathways in patient-derived amniocytes. This is the first report which shows a causative role of intragenic mTOR microduplication in the etiology of an isolated complex CHD.


Asunto(s)
Predisposición Genética a la Enfermedad , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Cromosomas Humanos Par 1 , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Cardiopatías Congénitas/diagnóstico , Humanos , Lactante , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Mutación , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Regulación hacia Arriba
8.
Asian J Androl ; 23(2): 157-162, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33109779

RESUMEN

Klinefelter syndrome (KS) is the most common sex chromosome disorder in men. It is characterized by germ cell loss and other variable clinical features, including autoimmunity. The sex-determining region of Y (SRY)-box 13 (Sox13) gene is expressed in mouse spermatogonia. In addition, it has been identified as islet cell autoantigen 12 (ICA12), which is involved in the pathogenesis of autoimmune diseases, including type 1 diabetes mellitus (DM) and primary biliary cirrhosis. Sox13 expression has never been investigated in patients with KS. In this age-matched, case-control study performed on ten patients with KS and ten controls, we found that SOX13 is significantly downregulated in peripheral blood mononuclear cells of patients with KS compared to controls. This finding might be consistent with the germ cell loss typical of patients with KS. However, the role of Sox13 in the pathogenesis of germ cell loss and humoral autoimmunity in patients with KS deserves to be further explored.


Asunto(s)
Autoantígenos/genética , Síndrome de Klinefelter/genética , Leucocitos Mononucleares/metabolismo , Factores de Transcripción SOXD/genética , Adulto , Estudios de Casos y Controles , Regulación hacia Abajo , Humanos , Masculino , Adulto Joven
9.
Int J Med Sci ; 17(10): 1315-1319, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32624686

RESUMEN

Trisomy 21, also known as Down Syndrome (DS), is the most common chromosome abnormality and causes intellectual disability. Long non-coding RNA (lncRNA) growth arrest-specific 5 (GAS5), whose differential expression has recently been reported in patients with Klinefelter syndrome, has been addressed to play a role in the development of inflammatory and autoimmune diseases, vascular endothelial cells apoptosis and atherosclerosis, all being common features in patients with DS. Therefore, the aim of this study was to assess the lncRNA GAS5 expression profile in DS patients and in controls. lncRNA GAS5 levels were evaluated by qRT-PCR assay in 23 patients with DS and 23 age-matched controls. A significant lncRNA GAS5 down-regulation was observed in patients with DS by RT-PCR analysis, The RNA sequencing experiments confirmed the qRT-PCR data. LncRNA GAS5 down-expression may play a role in the development of some typical features of the patients with DS and, particularly, in inflammatory and autoimmune diseases.


Asunto(s)
Síndrome de Down/genética , Síndrome de Down/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN
10.
Sci Rep ; 9(1): 20108, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882877

RESUMEN

Leukemic cells originate from the malignant transformation of undifferentiated myeloid/lymphoid hematopoietic progenitors normally residing in bone marrow. As the precise molecular mechanisms underlying this heterogeneous disease are yet to be disclosed, the identification and the validation of novel actors in leukemia is of extreme importance. Here, we show that KCTD15, a member of the emerging class of KCTD ((K)potassium Channel Tetramerization Domain containing) proteins, is strongly upregulated in patients affected by B-cell type acute lymphoblastic leukemia (B-ALL) and in continuous cell lines (RS4;11, REH, TOM-1, SEM) derived from this form of childhood leukemia. Interestingly, KCTD15 downregulation induces apoptosis and cell death suggesting that it has a role in cellular homeostasis and proliferation. In addition, stimulation of normal lymphocytes with the pokeweed mitogen leads to increased KCTD15 levels in a fashion comparable to those observed in proliferating leukemic cells. In this way, the role of KCTD15 is likely not confined to the B-ALL pathological state and extends to activation and proliferation of normal lymphocytes. Collectively, data here presented indicate that KCTD15 is an important and hitherto unidentified player in childhood lymphoid leukemia, and its study could open a new scenario for the identification of altered and still unknown molecular pathways in leukemia.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Canales de Potasio/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/genética , Biomarcadores de Tumor , Preescolar , Femenino , Reordenamiento Génico , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Quimioterapia de Inducción , Masculino , Proteína de la Leucemia Mieloide-Linfoide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Pronóstico
11.
Oncol Rep ; 41(2): 1209-1217, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30483802

RESUMEN

Endometrial cancer is the most frequently diagnosed gynecologic malignant disease. Although several genetic alterations have been associated with the increased risk of endometrial cancer, to date, the diagnosis and prognosis still rely on morphological features of the tumor, such as histological type, grading and invasiveness. As molecular­based classification is desirable for optimal treatment and prognosis of these cancers, we explored the potential of lncRNAs as molecular biomarkers. To this end, we first identified by RNA sequencing (RNA­Seq) a set of lncRNAs differentially expressed in cancer vs. normal endometrial tissues, a result confirmed also by analysis of normal and cancerous endometrium RNA­Seq data from TCGA (The Cancer Genome Atlas). A significant association of a subset of these differentially expressed lncRNAs with tumor grade was then determined in 405 TCGA endometrial cancer profiles. Integrating endometrial cancer­specific expression profiles of long and small non­coding RNAs, a functional association network was then identified. These results describe for the first time a functional ῾coreá¾½ network, comprising small and long RNAs, whose deregulation is associated with endometrial neoplastic transformation, representing a set of cancer biomarkers that can be monitored and targeted for diagnosis, follow­up and therapy of these tumors.


Asunto(s)
Neoplasias Endometriales/clasificación , ARN Largo no Codificante/metabolismo , Anciano , Anciano de 80 o más Años , Neoplasias Endometriales/metabolismo , Femenino , Humanos , Persona de Mediana Edad
12.
J Clin Lab Anal ; 32(6): e22418, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29484706

RESUMEN

BACKGROUND: Breast cancer (BC) is the most common neoplasm in women, with 5%-10% patients showing a familial predisposition, where germline mutations in BRCA1/BRCA2 genes are found in -20% of cases. Next-generation sequencing (NGS) is among the best available options for genetic screening, providing several benefits that include enhanced sensitivity and unbiased mutation detection. PALB2 (partner and localizer of BRCA2) is a cancer predisposing gene recently described that encodes a protein partner of BRCA2 involved in DNA double-strand break repair and cell cycle control. The DNA damage response represents a key cellular event, targeted by innovative anticancer therapies, including those based on poly (ADP-ribose) polymerase (PARP) inhibitors targeting PARP1 and PARP2 enzymes, activated by DNA damage and involved in single-strand break and base excision repair. METHODS: Genomic DNA was isolated from 34 patient samples and four BC cell lines, as controls, and 27 breast cancer predisposing genes belonging to the BRCA1/BRCA2 and PARP pathways were sequenced by NGS. RESULTS: The panel described here allowed identification of several sequence variations in most investigated genes, among which we found a novel truncating mutation in PALB2. CONCLUSIONS: The NGS-based strategy designed here for molecular analysis of a customized panel of BC predisposing and related genes was found to perform effectively, providing a comprehensive exploration of all genomic sequences of the investigated genes. It is thus useful for BC molecular diagnosis, in particular for familiar cases where alterations in routinely investigated genes, such as BRCAs, result to be absent.

13.
Genome Biol ; 18(1): 189, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-29017520

RESUMEN

BACKGROUND: The RNA-binding protein Argonaute 2 (AGO2) is a key effector of RNA-silencing pathways It exerts a pivotal role in microRNA maturation and activity and can modulate chromatin remodeling, transcriptional gene regulation and RNA splicing. Estrogen receptor beta (ERß) is endowed with oncosuppressive activities, antagonizing hormone-induced carcinogenesis and inhibiting growth and oncogenic functions in luminal-like breast cancers (BCs), where its expression correlates with a better prognosis of the disease. RESULTS: Applying interaction proteomics coupled to mass spectrometry to characterize nuclear factors cooperating with ERß in gene regulation, we identify AGO2 as a novel partner of ERß in human BC cells. ERß-AGO2 association was confirmed in vitro and in vivo in both the nucleus and cytoplasm and is shown to be RNA-mediated. ChIP-Seq demonstrates AGO2 association with a large number of ERß binding sites, and total and nascent RNA-Seq in ERß + vs ERß - cells, and before and after AGO2 knock-down in ERß + cells, reveals a widespread involvement of this factor in ERß-mediated regulation of gene transcription rate and RNA splicing. Moreover, isolation and sequencing by RIP-Seq of ERß-associated long and small RNAs in the cytoplasm suggests involvement of the nuclear receptor in RISC loading, indicating that it may also be able to directly control mRNA translation efficiency and stability. CONCLUSIONS: These results demonstrate that AGO2 can act as a pleiotropic functional partner of ERß, indicating that both factors are endowed with multiple roles in the control of key cellular functions.


Asunto(s)
Proteínas Argonautas/metabolismo , Neoplasias de la Mama/genética , Receptor beta de Estrógeno/metabolismo , Regulación de la Expresión Génica , Empalme del ARN , Complejo Silenciador Inducido por ARN/metabolismo , Transcripción Genética , Neoplasias de la Mama/metabolismo , Genoma Humano , Humanos , Células MCF-7
14.
Int J Mol Sci ; 18(8)2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28749435

RESUMEN

Congenital long QT syndrome (LQTS) is associated with high genetic and allelic heterogeneity. In some cases, more than one genetic variant is identified in the same (compound heterozygosity) or different (digenic heterozygosity) genes, and subjects with multiple pathogenic mutations may have a more severe disease. Standard-of-care clinical genetic testing for this and other arrhythmia susceptibility syndromes improves the identification of complex genotypes. Therefore, it is important to distinguish between pathogenic mutations and benign rare variants. We identified four genetic variants (KCNQ1-p.R583H, KCNH2-p.C108Y, KCNH2-p.K897T, and KCNE1-p.G38S) in an LQTS family. On the basis of in silico analysis, clinical data from our family, and the evidence from previous studies, we analyzed two mutated channels, KCNQ1-p.R583H and KCNH2-p.C108Y, using the whole-cell patch clamp technique. We found that KCNQ1-p.R583H was not associated with a severe functional impairment, whereas KCNH2-p.C108Y, a novel variant, encoded a non-functional channel that exerts dominant-negative effects on the wild-type. Notably, the common variants KCNH2-p.K897T and KCNE1-p.G38S were previously reported to produce more severe phenotypes when combined with disease-causing alleles. Our results indicate that the novel KCNH2-C108Y variant can be a pathogenic LQTS mutation, whereas KCNQ1-p.R583H, KCNH2-p.K897T, and KCNE1-p.G38S could be LQTS modifiers.


Asunto(s)
Alelos , Síndrome de QT Prolongado/genética , Animales , Células CHO , Niño , Cricetinae , Cricetulus , Electrocardiografía , Canales de Potasio Éter-A-Go-Go/genética , Familia , Femenino , Genes Dominantes , Células HEK293 , Humanos , Canal de Potasio KCNQ1/genética , Síndrome de QT Prolongado/diagnóstico por imagen , Mutación con Pérdida de Función/genética , Masculino , Mutación/genética , Linaje
15.
Oncotarget ; 7(34): 54650-54661, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27429044

RESUMEN

Hepatocellular carcinoma (HCC) is the result of a stepwise process, often beginning with development within a cirrhotic liver of premalignant lesions, morphologically characterized by low- (LGDN) and high-grade (HGDN) dysplastic nodules. PIWI-interacting RNAs (piRNAs) are small noncoding RNAs (sncRNAs), 23-35 nucleotide-long, exerting epigenetic and post-transcriptional regulation of gene expression. Recently the PIWI-piRNA pathway, best characterized in germline cells, has been identified also in somatic tissues, including stem and cancer cells, where it influences key cellular processes.Small RNA sequencing was applied to search for liver piRNAs and to profile their expression patterns in cirrhotic nodules (CNs), LGDN, HGDN, early HCC and progressed HCC (pHCC), analyzing 55 samples (14 CN, 9 LGDN, 6 HGDN, 6 eHCC and 20 pHCC) from 17 patients, aiming at identifying possible relationships between these sncRNAs and liver carcinogenesis. We identified a 125 piRNA expression signature that characterize HCC from matched CNs, correlating also to microvascular invasion in HCC. Functional analysis of the predicted RNA targets of deregulated piRNAs indicates that these can target key signaling pathways involved in hepatocarcinogenesis and HCC progression, thereby affecting their activity. Interestingly, 24 piRNAs showed specific expression patterns in dysplastic nodules, respect to cirrhotic liver and/or pHCC.The results demonstrate that the PIWI-piRNA pathway is active in human liver, where it represents a new player in the molecular events that characterize hepatocarcinogenesis, from early stages to pHCC. Furthermore, they suggest that piRNAs might be new disease biomarkers, useful for differential diagnosis of dysplastic and neoplastic liver lesions.


Asunto(s)
Carcinoma Hepatocelular/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Lesiones Precancerosas/genética , ARN Interferente Pequeño/genética , Carcinogénesis/genética , Carcinoma Hepatocelular/patología , Análisis por Conglomerados , Diagnóstico Diferencial , Humanos , Hígado/metabolismo , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Neoplasias Hepáticas/patología , Lesiones Precancerosas/patología
16.
Oncotarget ; 7(2): 1262-75, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26556856

RESUMEN

Breast cancer stem cells (BCSCs) play crucial roles in tumor initiation, metastasis and therapeutic resistance. A strict dependency between BCSCs and stromal cell components of tumor microenvironment exists. Thus, novel therapeutic strategies aimed to target the crosstalk between activated microenvironment and BCSCs have the potential to improve clinical outcome. Here, we investigated how leptin, as a mediator of tumor-stromal interactions, may affect BCSC activity using patient-derived samples (n = 16) and breast cancer cell lines, and determined the potential benefit of targeting leptin signaling in these model systems. Conditioned media (CM) from cancer-associated fibroblasts and breast adipocytes significantly increased mammosphere formation in breast cancer cells and depletion of leptin from CM completely abrogated this effect. Mammosphere cultures exhibited increased leptin receptor (OBR) expression and leptin exposure enhanced mammosphere formation. Microarray analyses revealed a similar expression profile of genes involved in stem cell biology among mammospheres treated with CM and leptin. Interestingly, leptin increased mammosphere formation in metastatic breast cancers and expression of OBR as well as HSP90, a target of leptin signaling, were directly correlated with mammosphere formation in metastatic samples (r = 0.68/p = 0.05; r = 0.71/p = 0.036, respectively). Kaplan-Meier survival curves indicated that OBR and HSP90 expression were associated with reduced overall survival in breast cancer patients (HR = 1.9/p = 0.022; HR = 2.2/p = 0.00017, respectively). Furthermore, blocking leptin signaling by using a full leptin receptor antagonist significantly reduced mammosphere formation in breast cancer cell lines and patient-derived samples. Our results suggest that leptin/leptin receptor signaling may represent a potential therapeutic target that can block the stromal-tumor interactions driving BCSC-mediated disease progression.


Asunto(s)
Neoplasias de la Mama/genética , Leptina/genética , Células Madre Neoplásicas/metabolismo , Células del Estroma/metabolismo , Western Blotting , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Comunicación Celular/efectos de los fármacos , Comunicación Celular/genética , Línea Celular Tumoral , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Fibroblastos/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Estimación de Kaplan-Meier , Leptina/metabolismo , Leptina/farmacología , Células MCF-7 , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Microambiente Tumoral/genética
17.
Age (Dordr) ; 37(3): 9796, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26036689

RESUMEN

The ability of the liver to regenerate and adjust its size after two/third partial hepatectomy (PH) is impaired in old rodents and humans. Here, we investigated by microarray analysis the expression pattern of hepatic genes in young and old untreated mice and the differences in gene expression profile following PH. Of the 10,237 messenger RNAs that had detectable expression, only 108 displayed a greater than 2-fold modification in gene expression levels between the two groups. These genes were involved in inflammatory and immune response, xenobiotics, and lipid and glucose metabolism. To identify the genes responsible for the different regenerative response, 10-week and 18-month-old mice subjected to PH were sacrificed at different time intervals after surgery. The results showed that 2463 transcripts had significantly different expression post PH between the two groups. However, in spite of impaired liver regeneration in old mice, cell cycle genes were similarly modified in both groups, the only exception being cyclin D1 gene which was up-regulated soon after PH in young mice, but mostly down-regulated in aged animals. Surprisingly, while in young hepatectomized mice, Yap messenger RNA (mRNA) expression was not significantly enhanced and protein expression essentially reflected the progression into cell cycle, its mRNA and protein levels were robustly increased in the liver of aged animals. Furthermore, a significant change of the age-related expression of the size regulator Yes-associated protein (YAP) was observed. Unexpectedly, while in young hepatectomized mice, Yap mRNA expression was not significantly enhanced and protein expression essentially reflected the progression into cell cycle, its mRNA and protein levels were robustly increased in the liver of aged animals. Moreover, when PH was performed on mitogen-induced enlarged livers, the earlier restoration of the original liver mass compared to animals subjected to PH only led to YAP down-regulation concomitantly with cyclin D1 up-regulation. Our data suggest that YAP activation is a size-dependent homeostatic mechanism that does not necessarily reflect cell cycle progression.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Envejecimiento/genética , Perfilación de la Expresión Génica , Regeneración Hepática/genética , Fosfoproteínas/genética , ARN Mensajero/genética , Animales , Western Blotting , Proteínas de Ciclo Celular/genética , Femenino , Hepatectomía , Técnicas para Inmunoenzimas , Hígado/cirugía , Ratones , Análisis por Micromatrices , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Señalizadoras YAP
18.
Oncotarget ; 6(7): 4677-91, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25686835

RESUMEN

Small non-coding RNAs (sncRNAs) represent a heterogeneous group of <200nt-long transcripts comprising microRNAs, PIWI-interacting RNAs (piRNAs) and small-nucleolar-RNAs (snoRNAs) involved in physiological and pathological processes such as carcinogenesis and tumor progression. Aberrant sncRNA expression in cancer has been associated with specific clinical phenotypes, grading, staging, metastases development and resistance to therapy.Aim of the present work is to study the role of sncRNAs in endometrial carcinogenesis. Changes in sncRNA expression were identified by high-throughput genomic analysis of paired normal, hyperplastic and cancerous endometrial tissues obtained by endometrial biopsies (n = 10). Using smallRNA sequencing and microarrays we identified significant differences in sncRNA expression pattern between normal, hyperplastic and neoplastic endometrium. This led to the definition of a sncRNA signature (129 microRNAs, 2 of which not previously described, 10 piRNAs and 3 snoRNAs) of neoplastic transformation. Functional bioinformatics analysis identified as downstream targets multiple signaling pathways potentially involved in the hyperplastic and neoplastic tissue responses, including Wnt/ß-catenin, and ERK/MAPK and TGF-ß-Signaling.Considering the regulatory role of sncRNAs, this newly identified sncRNA signature is likely to reflect the events leading to endometrial cancer, which can be exploited to dissect the carcinogenic process including novel biomarkers for early and non-invasive diagnosis of these tumors.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Endometrio/metabolismo , MicroARNs/genética , ARN Pequeño no Traducido/genética , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Neoplasias Endometriales/mortalidad , Endometrio/patología , Femenino , Estudios de Seguimiento , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Metástasis Linfática , Persona de Mediana Edad , Clasificación del Tumor , Invasividad Neoplásica , Estadificación de Neoplasias , Pronóstico , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARN , Tasa de Supervivencia
19.
Proteomics ; 15(11): 1801-7, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25604459

RESUMEN

Estrogen receptor subtypes (ERα and ERß) are transcription factors sharing a similar structure but exerting opposite roles in breast cancer cells. Besides the well-characterized genomic actions of nuclear ERs upon ligand binding, specific actions of ligand-free ERs in the cytoplasm also affect cellular functions. The identification of cytoplasmic interaction partners of unliganded ERα and ERß may help characterize the molecular basis of the extra-nuclear mechanism of action of these receptors, revealing novel mechanisms to explain their role in breast cancer response or resistance to endocrine therapy. To this aim, cytoplasmic extracts from human breast cancer MCF-7 cells stably expressing tandem affinity purification-tagged ERα and ERß and maintained in estrogen-free medium were subject to affinity-purification and MS analysis, leading to the identification of 84 and 142 proteins associated with unliganded ERα and ERß, respectively. Functional analyses of ER subtype-specific interactomes revealed significant differences in the molecular pathways targeted by each receptor in the cytoplasm. This work, reporting the first identification of the unliganded ERα and ERß cytoplasmic interactomes in breast cancer cells, provides novel experimental evidence on the nongenomic effects of ERs in the absence of hormonal stimulus. All MS data have been deposited in the ProteomeXchange with identifier PXD001202 (http://proteomecentral.proteomexchange.org/dataset/PXD001202).


Asunto(s)
Neoplasias de la Mama/metabolismo , Citoplasma/metabolismo , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Mapeo de Interacción de Proteínas/métodos , Neoplasias de la Mama/patología , Femenino , Humanos , Células MCF-7/metabolismo , Espectrometría de Masas
20.
Oncotarget ; 5(20): 9901-10, 2014 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25313140

RESUMEN

PIWI-interacting small non-coding RNAs (piRNAs) are genetic and epigenetic regulatory factors in germline cells, where they maintain genome stability, are involved in RNA silencing and regulate gene expression. We found that the piRNA biogenesis and effector pathway are present in human breast cancer (BC) cells and, analyzing smallRNA-Seq data generated from BC cell lines and tumor biopsies, we identified >100 BC piRNAs, including some very abundant and/or differentially expressed in mammary epithelial compared to BC cells, where this was influenced by estrogen or estrogen receptor ß, and in cancer respect to normal breast tissues. A search for mRNAs targeted by the BC piRNome revealed that eight piRNAs showing a specific expression pattern in breast tumors target key cancer cell pathways. Evidence of an active piRNA pathway in BC suggests that these small non-coding RNAs do exert transcriptional and post-transcriptional gene regulatory actions also in cancer cells.


Asunto(s)
Proteínas Argonautas/metabolismo , Neoplasias de la Mama/genética , ARN Interferente Pequeño/metabolismo , ARN Pequeño no Traducido/biosíntesis , Proteínas Argonautas/genética , Secuencia de Bases , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Receptor beta de Estrógeno/metabolismo , Estrógenos/deficiencia , Femenino , Humanos , Células MCF-7 , Datos de Secuencia Molecular , ARN Interferente Pequeño/genética , ARN Pequeño no Traducido/genética , Análisis de Secuencia de ARN , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...