Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dis Model Mech ; 15(3)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35344037

RESUMEN

Whole-body health relies on complex inter-organ signalling networks that enable organisms to adapt to environmental perturbations and to changes in tissue homeostasis. The intestine plays a major role as a signalling centre by producing local and systemic signals that are relayed to the body and that maintain intestinal and organismal homeostasis. Consequently, disruption of intestinal homeostasis and signalling are associated with systemic diseases and multi-organ dysfunction. In recent years, the fruit fly Drosophila melanogaster has emerged as a prime model organism to study tissue-intrinsic and systemic signalling networks of the adult intestine due to its genetic tractability and functional conservation with mammals. In this Review, we highlight Drosophila research that has contributed to our understanding of how the adult intestine interacts with its microenvironment and with distant organs. We discuss the implications of these findings for understanding intestinal and whole-body pathophysiology, and how future Drosophila studies might advance our knowledge of the complex interplay between the intestine and the rest of the body in health and disease.


Asunto(s)
Drosophila melanogaster , Drosophila , Animales , Drosophila melanogaster/genética , Homeostasis , Intestinos/fisiología , Mamíferos , Transducción de Señal/genética
2.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34361081

RESUMEN

Cancer cachexia is a common deleterious paraneoplastic syndrome that represents an area of unmet clinical need, partly due to its poorly understood aetiology and complex multifactorial nature. We have interrogated multiple genetically defined larval Drosophila models of tumourigenesis against key features of human cancer cachexia. Our results indicate that cachectic tissue wasting is dependent on the genetic characteristics of the tumour and demonstrate that host malnutrition or tumour burden are not sufficient to drive wasting. We show that JAK/STAT and TNF-α/Egr signalling are elevated in cachectic muscle and promote tissue wasting. Furthermore, we introduce a dual driver system that allows independent genetic manipulation of tumour and host skeletal muscle. Overall, we present a novel Drosophila larval paradigm to study tumour/host tissue crosstalk in vivo, which may contribute to future research in cancer cachexia and impact the design of therapeutic approaches for this pathology.


Asunto(s)
Caquexia/patología , Carcinogénesis/patología , Modelos Animales de Enfermedad , Larva/crecimiento & desarrollo , Neoplasias/complicaciones , Animales , Caquexia/etiología , Caquexia/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Drosophila , Perfilación de la Expresión Génica , Humanos , Quinasas Janus/genética , Quinasas Janus/metabolismo , Larva/genética , Larva/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
3.
Elife ; 102021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34096503

RESUMEN

RAS-like (RAL) GTPases function in Wnt signalling-dependent intestinal stem cell proliferation and regeneration. Whether RAL proteins work as canonical RAS effectors in the intestine and the mechanisms of how they contribute to tumourigenesis remain unclear. Here, we show that RAL GTPases are necessary and sufficient to activate EGFR/MAPK signalling in the intestine, via induction of EGFR internalisation. Knocking down Drosophila RalA from intestinal stem and progenitor cells leads to increased levels of plasma membrane-associated EGFR and decreased MAPK pathway activation. Importantly, in addition to influencing stem cell proliferation during damage-induced intestinal regeneration, this role of RAL GTPases impacts on EGFR-dependent tumourigenic growth in the intestine and in human mammary epithelium. However, the effect of oncogenic RAS in the intestine is independent from RAL function. Altogether, our results reveal previously unrecognised cellular and molecular contexts where RAL GTPases become essential mediators of adult tissue homeostasis and malignant transformation.


Asunto(s)
Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Receptores ErbB/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Receptores de Péptidos de Invertebrados/metabolismo , Células Madre/metabolismo , Proteínas de Unión al GTP ral/metabolismo , Animales , Animales Modificados Genéticamente , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Endocitosis , Receptores ErbB/genética , Femenino , Humanos , Hiperplasia , Mucosa Intestinal/patología , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Glándulas Mamarias Humanas/enzimología , Glándulas Mamarias Humanas/patología , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Receptores de Péptidos de Invertebrados/genética , Transducción de Señal , Células Madre/patología , Proteínas de Unión al GTP ral/genética
4.
Nat Cell Biol ; 23(5): 485-496, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33972729

RESUMEN

Coordination of stem cell function by local and niche-derived signals is essential to preserve adult tissue homeostasis and organismal health. The vasculature is a prominent component of multiple stem cell niches. However, its role in adult intestinal homeostasis remains largely understudied. Here we uncover a previously unrecognised crosstalk between adult intestinal stem cells in Drosophila and the vasculature-like tracheal system, which is essential for intestinal regeneration. Following damage to the intestinal epithelium, gut-derived reactive oxygen species activate tracheal HIF-1α and bidirectional FGF/FGFR signalling, leading to reversible remodelling of gut-associated terminal tracheal cells and intestinal stem cell proliferation following damage. Unexpectedly, reactive oxygen species-induced adult tracheal plasticity involves downregulation of the tracheal specification factor trachealess (trh) and upregulation of IGF2 messenger RNA-binding protein (IGF2BP2/Imp). Our results reveal an intestine-vasculature inter-organ communication programme that is essential to adapt the stem cell response to the proliferative demands of the intestinal epithelium.


Asunto(s)
Adaptación Fisiológica/fisiología , Células Madre Adultas/metabolismo , Homeostasis/fisiología , Células Madre/metabolismo , Animales , Drosophila/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Unión al ARN/metabolismo , Regeneración/fisiología , Transducción de Señal/fisiología , Nicho de Células Madre/fisiología
6.
Dev Cell ; 53(2): 131-132, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32315607

RESUMEN

Stem cells drive tissue regeneration due to their capacity to proliferate and differentiate in response to damage. In this issue of Developmental cell, Du et al. reveal a mechanism regulating intestinal stem cell differentiation and epithelial repair following injury, which depends on peroxisomes and their action inducing JAK/Stat signaling and Sox21a.


Asunto(s)
Quinasas Janus , Factores de Transcripción STAT , Diferenciación Celular , Intestinos , Quinasas Janus/metabolismo , Peroxisomas , Factores de Transcripción STAT/metabolismo
7.
Elife ; 82019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31358113

RESUMEN

Antimicrobial peptides (AMPs) are small cationic molecules best known as mediators of the innate defence against microbial infection. While in vitro and ex vivo evidence suggest AMPs' capacity to kill cancer cells, in vivo demonstration of an anti-tumour role of endogenous AMPs is lacking. Using a Drosophila model of tumourigenesis, we demonstrate a role for the AMP Defensin in the control of tumour progression. Our results reveal that Tumour Necrosis Factor mediates exposure of phosphatidylserine (PS), which makes tumour cells selectively sensitive to the action of Defensin remotely secreted from tracheal and fat tissues. Defensin binds tumour cells in PS-enriched areas, provoking cell death and tumour regression. Altogether, our results provide the first in vivo demonstration for a role of an endogenous AMP as an anti-cancer agent, as well as a mechanism that explains tumour cell sensitivity to the action of AMPs.


Asunto(s)
Muerte Celular , Defensinas/metabolismo , Factores Inmunológicos/metabolismo , Neoplasias/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Modelos Animales de Enfermedad , Drosophila , Análisis de Supervivencia
8.
Cell Stem Cell ; 24(4): 592-607.e7, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30853556

RESUMEN

Ral GTPases are RAS effector molecules and by implication a potential therapeutic target for RAS mutant cancer. However, very little is known about their roles in stem cells and tissue homeostasis. Using Drosophila, we identified expression of RalA in intestinal stem cells (ISCs) and progenitor cells of the fly midgut. RalA was required within ISCs for efficient regeneration downstream of Wnt signaling. Within the murine intestine, genetic deletion of either mammalian ortholog, Rala or Ralb, reduced ISC function and Lgr5 positivity, drove hypersensitivity to Wnt inhibition, and impaired tissue regeneration following damage. Ablation of both genes resulted in rapid crypt death. Mechanistically, RALA and RALB were required for efficient internalization of the Wnt receptor Frizzled-7. Together, we identify a conserved role for RAL GTPases in the promotion of optimal Wnt signaling, which defines ISC number and regenerative potential.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Células Madre/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Animales , Células Cultivadas , Drosophila , Femenino , Células HEK293 , Humanos , Intestinos/citología , Ratones , Ratones Endogámicos
9.
Cell Metab ; 29(2): 269-284.e10, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30344016

RESUMEN

The control of systemic metabolic homeostasis involves complex inter-tissue programs that coordinate energy production, storage, and consumption, to maintain organismal fitness upon environmental challenges. The mechanisms driving such programs are largely unknown. Here, we show that enteroendocrine cells in the adult Drosophila intestine respond to nutrients by secreting the hormone Bursicon α, which signals via its neuronal receptor DLgr2. Bursicon α/DLgr2 regulate energy metabolism through a neuronal relay leading to the restriction of glucagon-like, adipokinetic hormone (AKH) production by the corpora cardiaca and subsequent modulation of AKH receptor signaling within the adipose tissue. Impaired Bursicon α/DLgr2 signaling leads to exacerbated glucose oxidation and depletion of energy stores with consequent reduced organismal resistance to nutrient restrictive conditions. Altogether, our work reveals an intestinal/neuronal/adipose tissue inter-organ communication network that is essential to restrict the use of energy and that may provide insights into the physiopathology of endocrine-regulated metabolic homeostasis.


Asunto(s)
Tejido Adiposo/metabolismo , Drosophila melanogaster/metabolismo , Células Enteroendocrinas/metabolismo , Intestinos/citología , Hormonas de Invertebrados/metabolismo , Neuronas/metabolismo , Animales , Proteínas de Drosophila/metabolismo , Metabolismo Energético , Células Enteroendocrinas/citología , Femenino , Glucosa/metabolismo , Homeostasis , Hormonas de Insectos/metabolismo , Nutrientes/metabolismo , Oligopéptidos/metabolismo , Ácido Pirrolidona Carboxílico/análogos & derivados , Ácido Pirrolidona Carboxílico/metabolismo
10.
Biomed Res Int ; 2018: 7152962, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29725601

RESUMEN

The study of cancer has represented a central focus in medical research for over a century. The great complexity and constant evolution of the pathology require the use of multiple research model systems and interdisciplinary approaches. This is necessary in order to achieve a comprehensive understanding into the mechanisms driving disease initiation and progression, to aid the development of appropriate therapies. In recent decades, the fruit fly Drosophila melanogaster and its associated powerful genetic tools have become a very attractive model system to study tumour-intrinsic and non-tumour-derived processes that mediate tumour development in vivo. In this review, we will summarize recent work on Drosophila as a model system to study cancer biology. We will focus on the interactions between tumours and their microenvironment, including extrinsic mechanisms affecting tumour growth and how tumours impact systemic host physiology.


Asunto(s)
Muerte Celular/genética , Proliferación Celular/genética , Drosophila melanogaster/genética , Neoplasias/genética , Neoplasias/patología , Animales , Progresión de la Enfermedad , Humanos , Modelos Biológicos , Microambiente Tumoral/genética
11.
Genes (Basel) ; 9(3)2018 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-29498662

RESUMEN

Adult stem cells play critical roles in the basal maintenance of tissue integrity, also known as homeostasis, and in tissue regeneration following damage. The highly conserved Wnt signalling pathway is a key regulator of stem cell fate. In the gastrointestinal tract, Wnt signalling activation drives homeostasis and damage-induced repair. Additionally, deregulated Wnt signalling is a common hallmark of age-associated tissue dysfunction and cancer. Studies using mouse and fruit fly models have greatly improved our understanding of the functional contribution of the Wnt signalling pathway in adult intestinal biology. Here, we summarize the latest knowledge acquired from mouse and Drosophila research regarding canonical Wnt signalling and its key functions during stem cell driven intestinal homeostasis, regeneration, ageing and cancer.

12.
PLoS Genet ; 13(7): e1006870, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28708826

RESUMEN

Wnt/ß-catenin signal transduction directs intestinal stem cell (ISC) proliferation during homeostasis. Hyperactivation of Wnt signaling initiates colorectal cancer, which most frequently results from truncation of the tumor suppressor Adenomatous polyposis coli (APC). The ß-catenin-TCF transcription complex activates both the physiological expression of Wnt target genes in the normal intestinal epithelium and their aberrantly increased expression in colorectal tumors. Whether mechanistic differences in the Wnt transcription machinery drive these distinct levels of target gene activation in physiological versus pathological states remains uncertain, but is relevant for the design of new therapeutic strategies. Here, using a Drosophila model, we demonstrate that two evolutionarily conserved transcription cofactors, Earthbound (Ebd) and Erect wing (Ewg), are essential for all major consequences of Apc1 inactivation in the intestine: the hyperactivation of Wnt target gene expression, excess number of ISCs, and hyperplasia of the epithelium. In contrast, only Ebd, but not Ewg, mediates the Wnt-dependent regulation of ISC proliferation during homeostasis. Therefore, in the adult intestine, Ebd acts independently of Ewg in physiological Wnt signaling, but cooperates with Ewg to induce the hyperactivation of Wnt target gene expression following Apc1 loss. These findings have relevance for human tumorigenesis, as Jerky (JRK/JH8), the human Ebd homolog, promotes Wnt pathway hyperactivation and is overexpressed in colorectal, breast, and ovarian cancers. Together, our findings reveal distinct requirements for Ebd and Ewg in physiological Wnt pathway activation versus oncogenic Wnt pathway hyperactivation following Apc1 loss. Such differentially utilized transcription cofactors may offer new opportunities for the selective targeting of Wnt-driven cancers.


Asunto(s)
Proteína B del Centrómero/genética , Proteínas del Citoesqueleto/genética , Proteínas de Drosophila/genética , Neoplasias/genética , Neuropéptidos/genética , Proteínas Nucleares/biosíntesis , Factores de Transcripción/genética , Animales , Carcinogénesis/genética , Proliferación Celular/genética , Proteína B del Centrómero/biosíntesis , Proteínas de Unión al ADN , Modelos Animales de Enfermedad , Proteínas de Drosophila/biosíntesis , Epitelio/crecimiento & desarrollo , Epitelio/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Hiperplasia/genética , Hiperplasia/patología , Intestinos/crecimiento & desarrollo , Neoplasias/patología , Neuropéptidos/biosíntesis , Proteínas Nucleares/genética , Proteínas de Unión al ARN , Células Madre/metabolismo , Factores de Transcripción/biosíntesis , Vía de Señalización Wnt/genética
13.
Cell Cycle ; 15(12): 1538-44, 2016 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-27191973

RESUMEN

Bursicon is the main regulator of post molting and post eclosion processes during arthropod development. The active Bursicon hormone is a heterodimer of Burs-α and Burs-ß. However, adult midguts express Burs-α to regulate the intestinal stem cell niche. Here, we examined the potential expression and function of its heterodimeric partner, Burs-ß in the adult midgut. Unexpectedly, our evidence suggests that Burs-ß is not significantly expressed in the adult midgut. burs-ß mutants displayed the characteristic developmental defects but showed wild type-like adult midguts, thus uncoupling the developmental and adult phenotypes seen in burs-α mutants. Gain of function data and ex vivo experiments using a cAMP biosensor, demonstrated that Burs-α is sufficient to drive stem cell quiescence and to activate dLGR2 in the adult midgut. Our evidence suggests that the post developmental transactivation of dLGR2 in the adult midgut is mediated by Burs-α and that the ß subunit of Bursicon is dispensable for these activities.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Tracto Gastrointestinal/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hormonas de Invertebrados/genética , Subunidades de Proteína/genética , Receptores Acoplados a Proteínas G/genética , Animales , AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Tracto Gastrointestinal/crecimiento & desarrollo , Hormonas de Invertebrados/metabolismo , Muda/genética , Fenotipo , Multimerización de Proteína , Subunidades de Proteína/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Nicho de Células Madre/genética , Activación Transcripcional
14.
Curr Biol ; 26(3): R117-9, 2016 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-26859268

RESUMEN

Calcium ions are well-known intracellular signalling molecules. A new study identifies local cytoplasmic calcium as a central integrator of metabolic and proliferative signals in Drosophila intestinal stem cells.


Asunto(s)
Calcio/metabolismo , Drosophila melanogaster/citología , Transducción de Señal , Células Madre/citología , Animales
15.
Insect Biochem Mol Biol ; 67: 9-14, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26024801

RESUMEN

Adult tissue homeostasis requires a tight balance between the removal of old or damaged cells and the production of new ones. Such processes are usually driven by dedicated stem cells that reside within specific tissue locations or niches. The intestinal epithelium has a remarkable regenerative capacity, which has made it a prime paradigm for the study of stem cell-driven tissue self-renewal. The discovery of the presence of stem cells in the adult midgut of the fruit fly Drosophila melanogaster has significantly impacted our understanding of the role of stem cells in intestinal homeostasis. Here we will review the current knowledge of the main mechanisms involved in the regulation of tissue homeostasis in the adult Drosophila midgut, with a focus on the role of stem cells in this process. We will also discuss processes involving acute or chronic disruption of normal intestinal homeostasis such as damage-induced regeneration and ageing.


Asunto(s)
Drosophila melanogaster/fisiología , Células Madre Adultas/citología , Células Madre Adultas/fisiología , Envejecimiento/fisiología , Animales , Proliferación Celular , Drosophila melanogaster/citología , Homeostasis , Mucosa Intestinal/citología , Mucosa Intestinal/fisiología , Intestinos/citología , Intestinos/fisiología , Regeneración/fisiología
16.
Nature ; 517(7535): 497-500, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25383520

RESUMEN

Inactivation of APC is a strongly predisposing event in the development of colorectal cancer, prompting the search for vulnerabilities specific to cells that have lost APC function. Signalling through the mTOR pathway is known to be required for epithelial cell proliferation and tumour growth, and the current paradigm suggests that a critical function of mTOR activity is to upregulate translational initiation through phosphorylation of 4EBP1 (refs 6, 7). This model predicts that the mTOR inhibitor rapamycin, which does not efficiently inhibit 4EBP1 (ref. 8), would be ineffective in limiting cancer progression in APC-deficient lesions. Here we show in mice that mTOR complex 1 (mTORC1) activity is absolutely required for the proliferation of Apc-deficient (but not wild-type) enterocytes, revealing an unexpected opportunity for therapeutic intervention. Although APC-deficient cells show the expected increases in protein synthesis, our study reveals that it is translation elongation, and not initiation, which is the rate-limiting component. Mechanistically, mTORC1-mediated inhibition of eEF2 kinase is required for the proliferation of APC-deficient cells. Importantly, treatment of established APC-deficient adenomas with rapamycin (which can target eEF2 through the mTORC1-S6K-eEF2K axis) causes tumour cells to undergo growth arrest and differentiation. Taken together, our data suggest that inhibition of translation elongation using existing, clinically approved drugs, such as the rapalogs, would provide clear therapeutic benefit for patients at high risk of developing colorectal cancer.


Asunto(s)
Transformación Celular Neoplásica/patología , Neoplasias Intestinales/metabolismo , Neoplasias Intestinales/patología , Complejos Multiproteicos/metabolismo , Extensión de la Cadena Peptídica de Translación , Serina-Treonina Quinasas TOR/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/deficiencia , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Quinasa del Factor 2 de Elongación/deficiencia , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Activación Enzimática , Genes APC , Neoplasias Intestinales/genética , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Proteína Oncogénica p55(v-myc)/metabolismo , Factor 2 de Elongación Peptídica/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal , Proteínas Wnt/metabolismo
17.
Curr Biol ; 24(11): 1199-211, 2014 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-24814146

RESUMEN

BACKGROUND: Enteroendocrine cells populate gastrointestinal tissues and are known to translate local cues into systemic responses through the release of hormones into the bloodstream. RESULTS: Here we report a novel function of enteroendocrine cells acting as local regulators of intestinal stem cell (ISC) proliferation through modulation of the mesenchymal stem cell niche in the Drosophila midgut. This paracrine signaling acts to constrain ISC proliferation within the epithelial compartment. Mechanistically, midgut enteroendocrine cells secrete the neuroendocrine hormone Bursicon, which acts-beyond its known roles in development-as a paracrine factor on the visceral muscle (VM). Bursicon binding to its receptor, DLGR2, the ortholog of mammalian leucine-rich repeat-containing G protein-coupled receptors (LGR4-6), represses the production of the VM-derived EGF-like growth factor Vein through activation of cAMP. CONCLUSIONS: We therefore identify a novel paradigm in the regulation of ISC quiescence involving the conserved ligand/receptor Bursicon/DLGR2 and a previously unrecognized tissue-intrinsic role of enteroendocrine cells.


Asunto(s)
Drosophila melanogaster/fisiología , Células Enteroendocrinas/fisiología , Células Madre Mesenquimatosas/metabolismo , Comunicación Paracrina , Animales , Diferenciación Celular , Proliferación Celular , AMP Cíclico/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Femenino , Regulación de la Expresión Génica , Homeostasis , Intestinos/citología , Intestinos/fisiología , Hormonas de Invertebrados/genética , Hormonas de Invertebrados/metabolismo , Músculos/metabolismo , Neurregulinas/genética , Neurregulinas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
18.
EMBO J ; 33(13): 1474-91, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24788409

RESUMEN

The non-receptor tyrosine kinase c-Src, hereafter referred to as Src, is overexpressed or activated in multiple human malignancies. There has been much speculation about the functional role of Src in colorectal cancer (CRC), with Src amplification and potential activating mutations in up to 20% of the human tumours, although this has never been addressed due to multiple redundant family members. Here, we have used the adult Drosophila and mouse intestinal epithelium as paradigms to define a role for Src during tissue homeostasis, damage-induced regeneration and hyperplasia. Through genetic gain and loss of function experiments, we demonstrate that Src is necessary and sufficient to drive intestinal stem cell (ISC) proliferation during tissue self-renewal, regeneration and tumourigenesis. Surprisingly, Src plays a non-redundant role in the mouse intestine, which cannot be substituted by the other family kinases Fyn and Yes. Mechanistically, we show that Src drives ISC proliferation through upregulation of EGFR and activation of Ras/MAPK and Stat3 signalling. Therefore, we demonstrate a novel essential role for Src in intestinal stem/progenitor cell proliferation and tumourigenesis initiation in vivo.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Neoplasias Colorrectales/enzimología , Proteínas de Drosophila/metabolismo , Mucosa Intestinal/enzimología , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Regeneración , Células Madre/enzimología , Familia-src Quinasas/metabolismo , Animales , Proteína Tirosina Quinasa CSK , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Proteínas de Drosophila/genética , Drosophila melanogaster , Receptores ErbB/genética , Receptores ErbB/metabolismo , Amplificación de Genes , Humanos , Mucosa Intestinal/patología , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Transgénicos , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Receptores de Péptidos de Invertebrados/genética , Receptores de Péptidos de Invertebrados/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Células Madre/patología , Familia-src Quinasas/genética
19.
Cell Cycle ; 12(18): 2973-7, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23974108

RESUMEN

Adult stem cells are responsible for maintaining the balance between cell proliferation and differentiation within self-renewing tissues. The molecular and cellular mechanisms mediating such balance are poorly understood. The production of reactive oxygen species (ROS) has emerged as an important mediator of stem cell homeostasis in various systems. Our recent work demonstrates that Rac1-dependent ROS production mediates intestinal stem cell (ISC) proliferation in mouse models of colorectal cancer (CRC). Here, we use the adult Drosophila midgut and the mouse small intestine to directly address the role of Rac1 in ISC proliferation and tissue regeneration in response to damage. Our results demonstrate that Rac1 is necessary and sufficient to drive ISC proliferation and regeneration in an ROS-dependent manner. Our data point to an evolutionarily conserved role of Rac1 in intestinal homeostasis and highlight the value of combining work in the mammalian and Drosophila intestine as paradigms to study stem cell biology.


Asunto(s)
Proteínas de Drosophila/metabolismo , Intestinos/fisiología , Regeneración , Células Madre/citología , Proteína de Unión al GTP rac1/metabolismo , Animales , Proliferación Celular , Drosophila , Concentración de Iones de Hidrógeno , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Células Madre/metabolismo , Proteína de Unión al GTP rac1/antagonistas & inhibidores , Proteína de Unión al GTP rac1/genética
20.
Cell Stem Cell ; 12(6): 761-73, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23665120

RESUMEN

The Adenomatous Polyposis Coli (APC) gene is mutated in the majority of colorectal cancers (CRCs). Loss of APC leads to constitutively active WNT signaling, hyperproliferation, and tumorigenesis. Identification of pathways that facilitate tumorigenesis after APC loss is important for therapeutic development. Here, we show that RAC1 is a critical mediator of tumorigenesis after APC loss. We find that RAC1 is required for expansion of the LGR5 intestinal stem cell (ISC) signature, progenitor hyperproliferation, and transformation. Mechanistically, RAC1-driven ROS and NF-κB signaling mediate these processes. Together, these data highlight that ROS production and NF-κB activation triggered by RAC1 are critical events in CRC initiation.


Asunto(s)
Neoplasias Colorrectales/patología , Intestino Delgado/citología , FN-kappa B/metabolismo , Neuropéptidos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células Madre/citología , Proteínas Wnt/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Proliferación Celular , Neoplasias Colorrectales/metabolismo , Intestino Delgado/metabolismo , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...