Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35807429

RESUMEN

5-Hydroxymethylfurfural (5-HMF) has been described as one of the 12 key platform molecules derived from biomass by the US Department of Energy, and its hydrogenation reaction produces versatile liquid biofuels such as 2,5-dimethylfuran (2,5-DMF). Catalytic hydrogenation from 5-HMF to 2,5-DMF was thoroughly studied on the metal nickel catalysts supported on Al2O3-TiO2-ZrO2 (Ni/ATZ) mixed oxides using isopropanol and formic acid (FA) as hydrogen donors to find the best conditions of the reaction and hydrogen donor. The influence of metal content (wt%), Ni particle size (nm), Nickel Ni0, Ni0/NiO and NiO species, metal active sites and acid-based sites on the catalyst surface, and the effect of the hydrogen donor (isopropanol and formic acid) were systematically studied. The structural characteristics of the materials were studied using different physicochemical methods, including N2 physisorption, XRD, Raman, DRS UV-Vis, FT-IR, SEM, FT-IR Pyad, H2-TPD, CO2-TPD, H2-TPR, TEM and XPS. Second-generation 2,5-DMF biofuel and 5-HMF conversion by-products were analyzed and elucidated using 1H NMR. It was found that the Ni0NiO/ATZ3WI catalyst synthesized by the impregnation method (WI) generated a good synergistic effect between the species, showing the best catalytic hydrogenation of 5-HMF to 2,5-DMF using formic acid as a hydrogen donor for 24 h of reaction and temperature of 210 °C with 20 bar pressure of Argon (Ar).


Asunto(s)
Hidrógeno , Níquel , 2-Propanol , Biocombustibles , Furaldehído/análogos & derivados , Furanos , Hidrógeno/química , Hidrogenación , Níquel/química , Espectroscopía Infrarroja por Transformada de Fourier , Titanio
2.
Nanomaterials (Basel) ; 12(12)2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35745357

RESUMEN

γ-Valerolactone (GVL) has been considered an alternative as biofuel in the production of carbon-based chemicals; however, the use of noble metals and corrosive solvents has been a problem. In this work, Ni supported nanocatalysts were prepared to produce γ-Valerolactone from levulinic acid using methanol as solvent at a temperature of 170 °C utilizing 4 MPa of H2. Supports were modified at pH 3 using acetic acid (CH3COOH) and pH 9 using ammonium hydroxide (NH4OH) with different tungsten (W) loadings (1%, 3%, and 5%) by the Sol-gel method. Ni was deposited by the suspension impregnation method. The catalysts were characterized by various techniques including XRD, N2 physisorption, UV-Vis, SEM, TEM, XPS, H2-TPR, and Pyridine FTIR. Based on the study of acidity and activity relation, Ni dispersion due to the Lewis acid sites contributed by W at pH 9, producing nanoparticles smaller than 10 nm of Ni, and could be responsible for the high esterification activity of levulinic acid (LA) to Methyl levulinate being more selective to catalytic hydrogenation. Products and by-products were analyzed by 1H NMR. Optimum catalytic activity was obtained with 5% W at pH 9, with 80% yield after 24 h of reaction. The higher catalytic activity was attributed to the particle size and the amount of Lewis acid sites generated by modifying the pH of synthesis and the amount of W in the support due to the spillover effect.

3.
Materials (Basel) ; 14(19)2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34639867

RESUMEN

NiWAu trimetallic nanoparticles (NPs) on the surface of support Al2O3-CeO2-TiO2 were synthesized by a three-step synthetic method in which Au NPs were incorporated into presynthesized NiW/Al2O3-CeO2-TiO2. The recharge method, also known as the redox method, was used to add 2.5 wt% gold. The Al2O3-CeO2-TiO2 support was made by a sol-gel method with two different compositions, and then two metals were simultaneously loaded (5 wt% nickel and 2.5 wt% tungsten) by two different methods, incipient wet impregnation and ultrasound impregnation method. In this paper, we study the effect of Au addition using the recharge method on NiW nanomaterials supported on mixed oxides on the physicochemical properties of synthesized nanomaterials. The prepared nanomaterials were characterized by scanning electron microscopy, BET specific surface area, X-ray diffraction, diffuse reflectance spectroscopy in the UV-visible range and temperature-programmed desorption of hydrogen. The experimental results showed that after loading of gold, the dispersion was higher (46% and 50%) with the trimetallic nanomaterials synthesized by incipient wet impregnation plus recharge method than with impregnation plus ultrasound recharge method, indicating a greater number of active trimetallic (NiWAu) sites in these materials. Small-sized Au from NiWAu/ACTU1 trimetallic nanostructures was enlarged for NiWAu/ACT1. The strong metal NPs-support interaction shown for the formation of NiAl2O4, Ni-W-O and Ni-Au-O species simultaneously present in the surface of trimetallic nanomaterial probably plays an important role in the degree of dispersion of the gold active phase.

4.
Chemosphere ; 249: 126497, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32273124

RESUMEN

According to the search in the state of the art, no antecedents were found in which photocatalytic degradation of 17α-methyltestosterone (MT) hormone has been carried out using doped-TiO2. Nor have the transformation products formed during the heterogeneous photocatalysis (FH) been identified. Therefore, in this study we analyzed the photocatalytic degradation of the MT in aqueous solution, using doped TiO2 with Sm3+ or Gd3+ at 0.3 and 0.5 %wt. Thermal treatment temperature (500 °C and 800 °C) and MT (20 mgL-1) mineralization were also studied. All photocatalysts were synthesized using the sol-gel method and characterized by X-ray Diffraction (XRD), Specific Surface Area (BET), Ultraviolet-visible Spectroscopy (UV-vis), High-Resolution Transmission Electron Microscope/Energy-Dispersive X-ray analysis (HRTEM/EDS) and, X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL). MT mineralization was followed by a total organic carbon analyzer (TOC). The route of the photocatalytic mineralization of the hormone was obtained from the analysis of intermediate compounds determined by high performance liquid chromatography coupled to mass spectrometry (LC-TOF-MS). The results showed that TM and its transformation products were not degraded by photolysis. However, the degree of mineralization of the hormone was greater when the photocatalytic process was used. The photocatalytic efficiency was related to the dopant concentration, dopant type and thermal treatment. Therefore, Sm (0.3%)/TiO2 calcined at 500 °C showed the best performance for photocatalytic mineralization of MT.


Asunto(s)
Metiltestosterona/química , Fotólisis , Catálisis , Microscopía Electrónica de Transmisión , Espectroscopía de Fotoelectrones , Titanio/química , Difracción de Rayos X
5.
RSC Adv ; 9(20): 11123-11134, 2019 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35520247

RESUMEN

Catalysts Ag/ZrO2-CeO2 and Au/ZrO2-CeO2 were synthesized by a deposition-precipitation method and Ag-Au/ZrO2-CeO2 was prepared using a recharge method for the second metal (Au). The materials were characterized by physisorption of N2, XRD, ICP, UV-vis RDS, H2-TPR, XPS and TEM. The results obtained show that the specific areas for monometallic materials were 29-37 m2 g-1 and 27-74 m2 g-1 for bimetallics. The tetragonal crystal phase of ZrO2 stabilizes when CeO2 quantity increases. Using XPS an increment in Ce3+ species abundance was determined for bimetallic catalysts in contrast to the monometallic ones; according to the Ag 3d region, this metal oxidation was observed when augmenting the content of CeO2 in the materials, and with Au the opposite effect was produced. It was determined by TEM, that the average size of the metallic particles was smaller at bimetallic catalysts due the preparation method. Catalytic activity was evaluated by CWAO of phenol, the Ag-Au/ZrO2-CeO2 catalyst with 20% wt of cerium reached a degradation of 100% within an hour, being the most active catalyst. Maleic, formic and oxalic acid were identified as reaction intermediates; and at the end of the reaction acetic acid was identified as the main by-product, because it is the most refractory and the conditions for oxidation must be more severe.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...