Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 30
1.
Eur J Med Chem ; 264: 115981, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38086192

The occurrence of increased antibiotic resistance has reduced the availability of drugs effective in the control of infectious diseases, especially those caused by various combinations of bacteria and/or fungi that are often associated with poorer patient outcomes. In the hunt for novel antibiotics of interest to treat polymicrobial diseases, molecules bearing guanidine moieties have recently come to the fore in designing and optimizing antimicrobial agents. Due to their remarkable antibacterial and antifungal activities, labdane diterpenes are also attracting increasing interest in antimicrobial drug discovery. In this study, six different guanidines prenylated with labdanic fragments were synthesized and evaluated for their antimicrobial properties. Assays were carried out against both non-resistant and antibiotic-resistant bacteria strains, while their possible antifungal activities have been tested on the yeast Candida albicans. Two of the synthesized compounds, namely labdan-8,13(R)-epoxy-15-oyl guanidine and labdan-8,13(S)-epoxy-15-oyl guanidine, were finally selected as the best candidates for further developments in drug discovery, due to their antimicrobial effects on both Gram-negative and Gram-positive bacterial strains, their fungicide action, and their moderate toxicity in vivo on zebrafish embryos. The study also provides insights into the structure-activity relationships of the guanidine-functionalized labdane-type diterpenoids.


Anti-Infective Agents , Diterpenes , Animals , Humans , Antifungal Agents/pharmacology , Guanidine/pharmacology , Zebrafish , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Bacteria , Diterpenes/pharmacology , Candida albicans , Guanidines/pharmacology , Microbial Sensitivity Tests
2.
Sci Rep ; 13(1): 18197, 2023 10 24.
Article En | MEDLINE | ID: mdl-37875530

The gut-brain axis involves several bidirectional pathway communications including microbiome, bacterial metabolites, neurotransmitters as well as immune system and is perturbed both in brain and in gastrointestinal disorders. Consistently, microbiota-gut-brain axis has been found altered in autism spectrum disorder (ASD). We reasoned that such alterations occurring in ASD may impact both on methylation signatures of human host fecal DNA (HFD) and possibly on the types of human cells shed in the stools from intestinal tract giving origin to HFD. To test this hypothesis, we have performed whole genome methylation analysis of HFD from an age-restricted cohort of young children with ASD (N = 8) and healthy controls (N = 7). In the same cohort we have previously investigated the fecal microbiota composition and here we refined such analysis and searched for eventual associations with data derived from HFD methylome analysis. Our results showed that specific epigenetic signatures in human fecal DNA, especially at genes related to inflammation, associated with the disease. By applying methylation-based deconvolution algorithm, we found that the HFD derived mainly from immune cells and the relative abundance of those differed between patients and controls. Consistently, most of differentially methylated regions fitted with genes involved in inflammatory response. Interestingly, using Horvath epigenetic clock, we found that ASD affected children showed both epigenetic and microbiota age accelerated. We believe that the present unprecedented approach may be useful for the identification of the ASD associated HFD epigenetic signatures and may be potentially extended to other brain disorders and intestinal inflammatory diseases.


Autism Spectrum Disorder , Gastrointestinal Microbiome , Humans , Child , Child, Preschool , Autism Spectrum Disorder/metabolism , Gastrointestinal Microbiome/genetics , Dysbiosis/microbiology , DNA Methylation , Inflammation/genetics , Inflammation/complications
3.
Front Nutr ; 10: 1143004, 2023.
Article En | MEDLINE | ID: mdl-37599675

Obesity is associated with gastrointestinal (GI) tract and central nervous system (CNS) disorders. High-fat diet (HFD) feeding-induced obesity in mice induces dysbiosis, causing a shift toward bacteria-derived metabolites with detrimental effects on metabolism and inflammation: events often contributing to the onset and progression of both GI and CNS disorders. Palmitoylethanolamide (PEA) is an endogenous lipid mediator with beneficial effects in mouse models of GI and CNS disorders. However, the mechanisms underlining its enteroprotective and neuroprotective effects still need to be fully understood. Here, we aimed to study the effects of PEA on intestinal inflammation and microbiota alterations resulting from lipid overnutrition. Ultramicronized PEA (30 mg/kg/die per os) was administered to HFD-fed mice for 7 weeks starting at the 12th week of HFD regimen. At the termination of the study, the effects of PEA on inflammatory factors and cells, gut microbial features and tryptophan (TRP)-kynurenine metabolism were evaluated. PEA regulates the crosstalk between the host immune system and gut microbiota via rebalancing colonic TRP metabolites. PEA treatment reduced intestinal immune cell recruitment, inflammatory response triggered by HFD feeding, and corticotropin-releasing hormone levels. In particular, PEA modulated HFD-altered TRP metabolism in the colon, rebalancing serotonin (5-HT) turnover and reducing kynurenine levels. These effects were associated with a reshaping of gut microbiota composition through increased butyrate-promoting/producing bacteria, such as Bifidobacterium, Oscillospiraceae and Turicibacter sanguinis, with the latter also described as 5-HT sensor. These data indicate that the rebuilding of gut microbiota following PEA supplementation promotes host 5-HT biosynthesis, which is crucial in regulating intestinal function.

4.
Int J Mol Sci ; 24(11)2023 Jun 05.
Article En | MEDLINE | ID: mdl-37298727

Gut dysbiosis has been involved in the pathogenesis and progression of Parkinson's disease (PD), but the mechanisms through which gut microbiota (GM) exerts its influences deserve further study. Recently, we proposed a two-hit mouse model of PD in which ceftriaxone (CFX)-induced dysbiosis amplifies the neurodegenerative phenotype generated by striatal 6-hydroxydopamine (6-OHDA) injection in mice. Low GM diversity and the depletion of key gut colonizers and butyrate producers were the main signatures of GM alteration in this model. Here, we used the phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt2) to unravel candidate pathways of cell-to-cell communication associated with dual-hit mice and potentially involved in PD progression. We focused our analysis on short-chain fatty acids (SCFAs) metabolism and quorum sensing (QS) signaling. Based on linear discriminant analysis, combined with the effect size results, we found increased functions linked to pyruvate utilization and a depletion of acetate and butyrate production in 6-OHDA+CFX mice. The specific arrangement of QS signaling as a possible result of the disrupted GM structure was also observed. With this exploratory study, we suggested a scenario in which SCFAs metabolism and QS signaling might represent the effectors of gut dysbiosis potentially involved in the designation of the functional outcomes that contribute to the exacerbation of the neurodegenerative phenotype in the dual-hit animal model of PD.


Parkinson Disease , Mice , Animals , Parkinson Disease/metabolism , Dysbiosis/metabolism , Phylogeny , Oxidopamine , Butyrates
5.
Poult Sci ; 102(2): 102222, 2023 Feb.
Article En | MEDLINE | ID: mdl-36502562

Helicobacter pullorum is recognized as an emerging food-borne pathogen that may colonize the intestinal tract and the liver of avian species and humans causing several gastrointestinal and liver diseases. However, not all strains are reported to be capable of causing clinical disease, thus making poultry as reservoir for the zoonotic transmission of the infection through carcass contamination of broilers at slaughter. In poultry, the prevalence of this bacterium could be underestimated and the available data mainly refer to conventional rearing systems, whereas free-range and organic breedings have been poorly investigated. Therefore, this study was aimed to characterize the caecal microbiota community of free-range grown chickens and determine the presence and the relative abundance of H. pullorum by using NGS-based 16S rDNA sequencing. A total of 18 chickens reared for 56 d on a semi-extensive management system were euthanized at two time points: 9 birds at 28 d of age (before have access to outdoor; I = Indoor) and other 9 birds at 56 d of age (before slaughter; O = Outdoor). Cecal contents were collected for microbiota analyses. H. pullorum was detected in the cecum of 16/18 samples and its proportion in indoor was significantly higher than outdoor chickens (2.46 and 0.52%, respectively; P < 0.05), showing 78.8% of decrease with the outdoor access of the chickens. Therefore, it may be assumed that the potential for zoonotic infection is less likely. Moreover, H. pullorum was negatively correlated with 17 bacterial species as significantly more abundant in Outdoor microbial caecal communities. Among these, we highlighted the presence of Mucispirillium schaedleri and Oscillospira, already previously associated with a healthy gut and thus representing promising gut bacterial markers for host health. Our findings suggest that alternative production systems with outdoor access, may play a crucial role in the establishment of a healthy gut microbiota, which in turn might prevent colonization of harmful bacteria such as Helicobacter pullorum.


Helicobacter , Microbiota , Humans , Animals , Chickens/microbiology , Helicobacter/genetics , Bacteria , Cecum/microbiology , Microbiota/genetics
6.
Front Vet Sci ; 9: 904522, 2022.
Article En | MEDLINE | ID: mdl-35909674

Characterizing the gut microbiota of free-range and alternative poultry production systems provides information, which can be used to improve poultry welfare, performance, and environmental sustainability. Gut microbiota influence not only the health and metabolism of the host but also the presence of zoonotic agents contaminating food of animal origin. In this study, the composition and diversity of the cecal microbiota community of free-range grown chickens were characterized by 16S rDNA high-throughput Illumina sequencing. Significant differences were observed in the composition of chicken cecal microbiota at the time points of 28 days of age (Indoor group) and 56 days of age (Outdoor group), i.e., before and after the outdoor access period of chicken groups. The Outdoor group showed a richer and more complex microbial community, characterized by the onset of new phyla such as Deferribacterota and Synergistota, while the Indoor group showed an increase in Campylobacterota. At the species level, it is noteworthy that the occurrence of Mucispirillum schaedleri in Outdoor group is known to potentially stimulate mucus layer formation in the distal intestinal tract, thus being associated with a healthy gut. We also report a significant decrease in the Outdoor group of Helicobacter pullorum, highlighting that the lower abundance at the age of slaughter reduced the possibility to contaminate chickens' carcasses and, consequently, its zoonotic potential. As revealed by a mutual exclusion study in network analysis, H. pullorum was present only if Bacteroides barnesiae, an uncultured organism of the genus Synergistes, and Bacteroides gallinaceum were absent. Finally, microbiome predictive analysis revealed an increase of vitamins and micronutrient biosyntheses such as queuosine (Q) and its precursor pre Q0, in the Outdoor group, suggesting that the outdoor evolved microbiota of chickens do contribute to the vitamin pool of the gut and the biosynthesis of micronutrients involved in vital cell processes.

7.
Int J Mol Sci ; 23(12)2022 Jun 07.
Article En | MEDLINE | ID: mdl-35742813

Recent evidence highlights Parkinson's disease (PD) initiation in the gut as the prodromal phase of neurodegeneration. Gut impairment due to microbial dysbiosis could affect PD pathogenesis and progression. Here, we propose a two-hit model of PD through ceftriaxone (CFX)-induced dysbiosis and gut inflammation before the 6-hydroxydopamine (6-OHDA) intrastriatal injection to mimic dysfunctional gut-associated mechanisms preceding PD onset. Therefore, we showed that dysbiosis and gut damage amplified PD progression, worsening motor deficits induced by 6-OHDA up to 14 days post intrastriatal injection. This effect was accompanied by a significant increase in neuronal dopaminergic loss (reduced tyrosine hydroxylase expression and increased Bcl-2/Bax ratio). Notably, CFX pretreatment also enhanced systemic and colon inflammation of dual-hit subjected mice. The exacerbated inflammatory response ran in tandem with a worsening of colonic architecture and gut microbiota perturbation. Finally, we demonstrated the beneficial effect of post-biotic sodium butyrate in limiting at once motor deficits, neuroinflammation, and colon damage and re-shaping microbiota composition in this novel dual-hit model of PD. Taken together, the bidirectional communication of the microbiota-gut-brain axis and the recapitulation of PD prodromal/pathogenic features make this new paradigm a useful tool for testing or repurposing new multi-target compounds in the treatment of PD.


Dysbiosis , Parkinson Disease , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Butyrates/pharmacology , Butyrates/therapeutic use , Dysbiosis/pathology , Inflammation/pathology , Mice , Oxidopamine , Parkinson Disease/metabolism
8.
Sci Rep ; 11(1): 7404, 2021 04 01.
Article En | MEDLINE | ID: mdl-33795775

Accumulating evidence suggests that modifications of gut function and microbiota composition might play a pivotal role in the pathophysiology of several cardiovascular diseases, including heart failure (HF). In this study we systematically analysed gut microbiota composition, intestinal barrier integrity, intestinal and serum cytokines and serum endotoxin levels in C57BL/6 mice undergoing pressure overload by transverse aortic constriction (TAC) for 1 and 4 weeks. Compared to sham-operated animals, TAC induced prompt and strong weakening of intestinal barrier integrity, long-lasting decrease of colon anti-inflammatory cytokine levels, significant increases of serum levels of bacterial lipopolysaccharide and proinflammatory cytokines. TAC also exerted effects on microbiota composition, inducing significant differences in bacterial genera inside Actinobacteria, Firmicutes, Proteobacteria and TM7 phyla as shown by 16S rDNA sequencing of fecal samples from TAC or sham mice. These results suggest that gut modifications represent an important element to be considered in the development and progression of cardiac dysfunction in response to TAC and support this animal model as a valuable tool to establish the role and mechanisms of gut-heart crosstalk in HF. Evidence arising in this field might identify new treatment options targeting gut integrity and microbiota components to face adverse cardiac events.


Aortic Valve Stenosis/complications , Gastrointestinal Microbiome , Inflammation/etiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Animals , Aortic Valve Stenosis/diagnosis , Biomarkers , Disease Models, Animal , Disease Susceptibility , Dysbiosis , Echocardiography , Feces/microbiology , Heart Failure/diagnosis , Heart Failure/etiology , Heart Function Tests , Inflammation/metabolism , Inflammation/pathology , Metagenome , Metagenomics/methods , Mice , Permeability , Ventricular Remodeling
9.
Epilepsia ; 62(2): 529-541, 2021 02.
Article En | MEDLINE | ID: mdl-33428780

OBJECTIVE: A large number of studies have highlighted the important role of the gut microbiota in the pathophysiology of neurological disorders, suggesting that its manipulation might serve as a treatment strategy. We hypothesized that the gut microbiota participates in absence seizure development and maintenance in the WAG/Rij rat model and tested this hypothesis by evaluating potential gut microbiota and intestinal alterations in the model, as well as measuring the impact of microbiota manipulation using fecal microbiota transplantation (FMT). METHODS: Initially, gut microbiota composition and intestinal histology of WAG/Rij rats (a well-recognized genetic model of absence epilepsy) were studied at 1, 4, and 8 months of age in comparison to nonepileptic Wistar rats. Subsequently, in a second set of experiments, at 6 months of age, untreated Wistar or WAG/Rij rats treated with ethosuximide (ETH) were used as gut microbiota donors for FMT in WAG/Rij rats, and electroencephalographic (EEG) recordings were obtained over 4 weeks. At the end of FMT, stool and gut samples were collected, absence seizures were measured on EEG recordings, and microbiota analysis and histopathological examinations were performed. RESULTS: Gut microbiota analysis showed differences in beta diversity and specific phylotypes at all ages considered and significant variances in the Bacteroidetes/Firmicutes ratio between Wistar and WAG/Rij rats. FMT, from both Wistar and ETH-treated WAG/Rij donors to WAG/Rij rats, significantly decreased the number and duration of seizures. Histological results indicated that WAG/Rij rats were characterized by intestinal villi disruption and inflammatory infiltrates already at 1 month of age, before seizure occurrence; FMT partially restored intestinal morphology while also significantly modifying gut microbiota and concomitantly reducing absence seizures. SIGNIFICANCE: Our results demonstrate for the first time that the gut microbiota is modified and contributes to seizure occurrence in a genetic animal model of absence epilepsy and that its manipulation may be a suitable therapeutic target for absence seizure management.


Anti-Bacterial Agents/pharmacology , Anticonvulsants/pharmacology , Epilepsy, Absence/microbiology , Fecal Microbiota Transplantation , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/genetics , Animals , Bacteroidetes , Butyrates/metabolism , Colon/pathology , DNA, Bacterial/analysis , DNA, Ribosomal/genetics , Disease Models, Animal , Electroencephalography , Epilepsy, Absence/genetics , Epilepsy, Absence/physiopathology , Epilepsy, Absence/therapy , Ethosuximide/pharmacology , Fatty Acids, Volatile/metabolism , Firmicutes , Gastrointestinal Motility , Haptoglobins/metabolism , Ileum/pathology , Propionates/metabolism , Protein Precursors/metabolism , Proteobacteria , Rats , Rats, Wistar , Seizures/genetics , Seizures/microbiology , Seizures/physiopathology
10.
Biomolecules ; 11(2)2021 01 22.
Article En | MEDLINE | ID: mdl-33499115

The bidirectional microbiota-gut-brain axis has raised increasing interest over the past years in the context of health and disease, but there is a lack of information on molecular mechanisms underlying this connection. We hypothesized that change in microbiota composition may affect brain epigenetics leading to long-lasting effects on specific brain gene regulation. To test this hypothesis, we used Zebrafish (Danio Rerio) as a model system. As previously shown, treatment with high doses of probiotics can modulate behavior in Zebrafish, causing significant changes in the expression of some brain-relevant genes, such as BDNF and Tph1A. Using an ultra-deep targeted analysis, we investigated the methylation state of the BDNF and Tph1A promoter region in the brain and gut of probiotic-treated and untreated Zebrafishes. Thanks to the high resolution power of our analysis, we evaluated cell-to-cell methylation differences. At this resolution level, we found slight DNA methylation changes in probiotic-treated samples, likely related to a subgroup of brain and gut cells, and that specific DNA methylation signatures significantly correlated with specific behavioral scores.


Brain-Derived Neurotrophic Factor/genetics , DNA Methylation , Tryptophan Hydroxylase/genetics , Alleles , Animals , Behavior, Animal , Brain/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Computational Biology/methods , CpG Islands , Epigenesis, Genetic , Female , Gastrointestinal Microbiome , Gene Expression Profiling , Gene Expression Regulation , Gene Library , Lacticaseibacillus rhamnosus , Male , Microbiota , Probiotics , Promoter Regions, Genetic , Tryptophan Hydroxylase/metabolism , Zebrafish
11.
Pflugers Arch ; 472(7): 899-909, 2020 07.
Article En | MEDLINE | ID: mdl-32577860

Investigating the Shaker-related K+ channel Kv1.1, the dysfunction of which is responsible for episodic ataxia 1 (EA1), at the functional and molecular level provides valuable understandings on normal channel dynamics, structural correlates underlying voltage-gating, and disease-causing mechanisms. Most studies focused on apparently functional amino acid residues composing voltage-gated K+ channels, neglecting the simplest ones. Glycine at position 311 of Kv1.1 is highly conserved both evolutionarily and within the Kv channel superfamily, is located in a region functionally relevant (the S4-S5 linker), and results in overt disease when mutated (p.G311D). By mutating the G311 residue to aspartate, we show here that the channel voltage-gating, activation, deactivation, inactivation, and window currents are markedly affected. In silico, modeling shows this glycine residue is strategically placed at one end of the linker helix which must be free to both bend and move past other portions of the protein during the channel's opening and closing. This is befitting of a glycine residue as its small neutral side chain allows for movement unhindered by interaction with any other amino acid. Results presented reveal the crucial importance of a distinct glycine residue, within the S4-S5 linker, in the voltage-dependent electromechanical coupling that control channel gating.


Amino Acids/metabolism , Ion Channel Gating/physiology , Kv1.1 Potassium Channel/genetics , Amino Acid Sequence , Animals , Ataxia/metabolism , Ataxia/pathology , Xenopus laevis/metabolism
12.
Clin Epigenetics ; 11(1): 149, 2019 10 28.
Article En | MEDLINE | ID: mdl-31661019

BACKGROUND: Programmed epigenetic modifications occurring at early postnatal brain developmental stages may have a long-lasting impact on brain function and complex behavior throughout life. Notably, it is now emerging that several genes that undergo perinatal changes in DNA methylation are associated with neuropsychiatric disorders. In this context, we envisaged that epigenetic modifications during the perinatal period may potentially drive essential changes in the genes regulating brain levels of critical neuromodulators such as D-serine and D-aspartate. Dysfunction of this fine regulation may contribute to the genesis of schizophrenia or other mental disorders, in which altered levels of D-amino acids are found. We recently demonstrated that Ddo, the D-aspartate degradation gene, is actively demethylated to ultimately reduce D-aspartate levels. However, the role of epigenetics as a mechanism driving the regulation of appropriate D-ser levels during brain development has been poorly investigated to date. METHODS: We performed comprehensive ultradeep DNA methylation and hydroxymethylation profiling along with mRNA expression and HPLC-based D-amino acids level analyses of genes controlling the mammalian brain levels of D-serine and D-aspartate. DNA methylation changes occurring in specific cerebellar cell types were also investigated. We conducted high coverage targeted bisulfite sequencing by next-generation sequencing and single-molecule bioinformatic analysis. RESULTS: We report consistent spatiotemporal modifications occurring at the Dao gene during neonatal development in a specific brain region (the cerebellum) and within specific cell types (astrocytes) for the first time. Dynamic demethylation at two specific CpG sites located just downstream of the transcription start site was sufficient to strongly activate the Dao gene, ultimately promoting the complete physiological degradation of cerebellar D-serine a few days after mouse birth. High amount of 5'-hydroxymethylcytosine, exclusively detected at relevant CpG sites, strongly evoked the occurrence of an active demethylation process. CONCLUSION: The present investigation demonstrates that robust and selective demethylation of two CpG sites is associated with postnatal activation of the Dao gene and consequent removal of D-serine within the mouse cerebellum. A single-molecule methylation approach applied at the Dao locus promises to identify different cell-type compositions and functions in different brain areas and developmental stages.


Cerebellum/growth & development , D-Amino-Acid Oxidase/genetics , DNA Methylation , Serine/metabolism , Transcriptional Activation , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Animals , Animals, Newborn , Cerebellum/metabolism , CpG Islands , D-Aspartic Acid/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Developmental , High-Throughput Nucleotide Sequencing , Male , Mice , Sequence Analysis, DNA/methods , Single Molecule Imaging/methods
14.
Sci Rep ; 9(1): 4832, 2019 03 18.
Article En | MEDLINE | ID: mdl-30886232

The use/misuse of antibiotics leads to pathological features referring to antibiotic-induced intestinal injury (AIJ), a clinical issue that plays a prominent role in the development of severe digestive disturbances. AIJ is characterized by loss of intestinal architecture and function, dysbiosis and bacterial translocation into the liver, triggering hepatic inflammation. This study aimed at determining the beneficial effect of N-(1-carbamoyl-2-phenylethyl) butyramide (FBA), a butyrate releasing compound, in ceftriaxone-induced intestinal injury. To this purpose, mice receiving ceftriaxone (8 g∙kg-1/die, per os) for five days, were treated with FBA (212,5 mg∙kg-1/die, per os) for five or fifteen days. FBA modulated key players of innate immunity in antibiotic-injured gut tissues, reducing inflammatory process and improving the anti-inflammatory and resolving pattern. FBA also improved colonic architecture and intestinal integrity. Interestingly, we also observed a remodeling of gut microbiota composition related to an increase of metabolic pathways related to lactate and butyrate production. At mechanistic level, FBA induced histone acetylation and increased the expression of GPR43 and monocarboxylate transporter 1 in colon. Our data clearly demonstrated that FBA has multiple converging mechanisms in limiting intestinal and hepatic alterations to counteract AIJ.


Anti-Bacterial Agents/adverse effects , Butyrates/administration & dosage , Colitis/drug therapy , Dysbiosis/drug therapy , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/drug effects , Acetylation/drug effects , Animals , Bacterial Translocation/drug effects , Butyrates/metabolism , Ceftriaxone/adverse effects , Colitis/chemically induced , Colitis/immunology , Colitis/microbiology , Colon/drug effects , Colon/immunology , Colon/microbiology , Colon/pathology , Disease Models, Animal , Dysbiosis/chemically induced , Dysbiosis/immunology , Dysbiosis/microbiology , Histones/metabolism , Humans , Immunity, Innate/drug effects , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Lactic Acid/metabolism , Male , Mice , Monocarboxylic Acid Transporters/metabolism , Receptors, G-Protein-Coupled/metabolism , Symporters/metabolism
15.
Brain Behav Immun ; 74: 166-175, 2018 11.
Article En | MEDLINE | ID: mdl-30193877

Autism spectrum disorders (ASD) are a group of heterogeneous neurodevelopmental conditions characterized by impaired social interaction, and repetitive stereotyped behaviours. Interestingly, functional and inflammatory gastrointestinal diseases are often reported as a comorbidity in ASDs, indicating gut-brain axis as a novel emerging approach. Recently, a central role for peroxisome-proliferator activated receptor (PPAR)-α has been addressed in neurological functions, associated with the behaviour. Among endogenous lipids, palmitoylethanolamide (PEA), a PPAR-α agonist, has been extensively studied for its anti-inflammatory effects both at central and peripheral level. Based on this background, the aim of this study was to investigate the pharmacological effects of PEA on autistic-like behaviour of BTBR T+tf/J mice and to shed light on the contributing mechanisms. Our results showed that PEA reverted the altered behavioural phenotype of BTBR mice, and this effect was contingent to PPAR-α activation. Moreover, PEA was able to restore hippocampal BDNF signalling pathway, and improve mitochondrial dysfunction, both pathological aspects, known to be consistently associated with ASDs. Furthermore, PEA reduced the overall inflammatory state of BTBR mice, reducing the expression of pro-inflammatory cytokines at hippocampal, serum, and colonic level. The analysis of gut permeability and the expression of colonic tight junctions showed a reduction of leaky gut in PEA-treated BTBR mice. This finding together with PEA effect on gut microbiota composition suggests an involvement of microbiota-gut-brain axis. In conclusion, our results demonstrated a therapeutic potential of PEA in limiting ASD symptoms, through its pleiotropic mechanism of action, supporting neuroprotection, anti-inflammatory effects, and the modulation of gut-brain axis.


Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/metabolism , Ethanolamines/pharmacology , Palmitic Acids/pharmacology , Amides , Animals , Autistic Disorder/drug therapy , Autistic Disorder/metabolism , Brain/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Colon/metabolism , Cytokines/metabolism , Disease Models, Animal , Ethanolamines/metabolism , Gastrointestinal Microbiome/drug effects , Hippocampus/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/drug effects , PPAR alpha/drug effects , PPAR alpha/metabolism , Palmitic Acids/metabolism , Signal Transduction/drug effects
16.
Sci Rep ; 8(1): 10163, 2018 07 05.
Article En | MEDLINE | ID: mdl-29976992

The spatio-temporal regulation of genes involved in the synthesis and degradation of D-serine and D-aspartate such as serine racemase (SR), D-amino acid oxidase (DAO), G72 and D-aspartate oxidase (DDO), play pivotal roles in determining the correct levels of these D-amino acids in the human brain. Here we provide a comprehensive analysis of mRNA expression and DNA methylation status of these genes in post-mortem samples from hippocampus, dorsolateral prefrontal cortex, and cerebellum from patients with schizophrenia and non-psychiatric controls. DNA methylation analysis was performed at an ultradeep level, measuring individual epialleles frequency by single molecule approach. Differential CpG methylation and expression was detected across different brain regions, although no significant correlations were found with diagnosis. G72 showed the highest CpG and non-CpG methylation degree, which may explain the repression of G72 transcription in the brain regions considered here. Conversely, in line with the sustained SR mRNA expression in the analyzed areas, very low methylation levels were detected at this gene's regulatory regions. Furthermore, for DAO and DDO, our single-molecule methylation approach demonstrated that analysis of epiallele distribution was able to detect differences in DNA methylation representing area-specific methylation signatures, which are likely not detectable with targeted or genome-wide classic methylation analyses.


Brain/metabolism , D-Aspartic Acid/metabolism , DNA Methylation/genetics , Postmortem Changes , Schizophrenia/genetics , Serine/metabolism , Alleles , Case-Control Studies , D-Amino-Acid Oxidase/genetics , D-Amino-Acid Oxidase/metabolism , D-Aspartate Oxidase/genetics , Epigenesis, Genetic , Humans , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
17.
Med Mycol ; 56(8): 987-993, 2018 Nov 01.
Article En | MEDLINE | ID: mdl-29462476

Cytochrome P450 CYP1A1 and CYP1B1 enzymes are regulated by the aryl hydrocarbon receptor (AhR), a transcription factor activated by a variety of ligands among which Malassezia metabolites. In this study, we analyzed the modulation of CYP1A1, CYP1B1, and AhR in human keratinocytes infected with different strains of Malassezia pachydermatis, as well as the upregulation of some genes involved in the epidermal homeostasis. We demonstrated that all the strains induced AhR activation and its nuclear translocation in HaCaT cells infected for 24 h, compared to untreated cells. The expression of CYP1A1 and CYP1B1, prototypical markers of the AhR signaling pathway, were upregulated with the level of CYP1A1 mRNA approximately 100-fold greater than that for CYP1B1. Filaggrin, involucrin, and TGaseI, proteins involved in epidermal differentiation, were all modulated by Malassezia pachydermatis strains, with the strongest induction observed for filaggrin. By contrast, quinone oxidoreductase 1 (NQO1), which is part of the antioxidant defense system involved in detoxification, was not modulated in our experimental model. In conclusions, our findings suggest that Malassezia pachydermatis infection of human keratinocytes induces activation of the AhR, and increases the expression of its responsive genes and markers of epidermal differentiation, paving the way for occurrence/exacerbation of pathological skin conditions.


Basic Helix-Loop-Helix Transcription Factors/biosynthesis , Cytochrome P-450 CYP1A1/biosynthesis , Keratinocytes/metabolism , Keratinocytes/microbiology , Malassezia/growth & development , Receptors, Aryl Hydrocarbon/biosynthesis , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Line , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1B1/biosynthesis , Cytochrome P-450 CYP1B1/genetics , Filaggrin Proteins , Gene Expression Profiling , Humans , RNA, Messenger/analysis , RNA, Messenger/genetics , Receptors, Aryl Hydrocarbon/genetics , Transcription, Genetic
18.
Front Microbiol ; 9: 3146, 2018.
Article En | MEDLINE | ID: mdl-30619212

Proliferation and/or depletion of clusters of specific bacteria regulate intestinal functions and may interfere with neuro-immune communication and behavior in patients with autism spectrum disorder (ASD). Consistently, qualitative and quantitative alteration of bacterial metabolites may functionally affect ASD pathophysiology. Up to date, age-restricted cohort studies, that may potentially help to identify specific microbial signatures in ASD, are lacking. We investigated the gut microbiota (GM) structure and fecal short chain fatty acids (SCFAs) levels in a cohort of young children (2-4 years of age) with ASD, with respect to age-matched neurotypical healthy controls. Strong increase of Bacteroidetes and Proteobacteria and decrease of Actinobacteria was observed in these patients. Among the 91 OTUs whose relative abundance was altered in ASD patients, we observed a striking depletion of Bifidobacterium longum, one of the dominant bacteria in infant GM and, conversely, an increase of Faecalibacterium prausnitzii, a late colonizer of healthy human gut and a major butyrate producer. High levels of F. prausnitzii were associated to increase of fecal butyrate levels within normal range, and over representation of KEGG functions related to butyrate production in ASD patients. Here we report unbalance of GM structure with a shift in colonization by gut beneficial bacterial species in ASD patients as off early childhood.

19.
Sci Rep ; 7(1): 16269, 2017 11 24.
Article En | MEDLINE | ID: mdl-29176587

Insects could be potential nutritional sources both for humans and animals. Among these, Hermetia illucens, with good amount of chitin and proteins, represents a suitable diet replacement for laying hens. Little is known about insect diet effects on the microbial ecology of the gastrointestinal tract and bacterial metabolites production. In this study we investigated the effect of H. illucens larvae meal administration on cecal microbiota and short chain fatty acids (SCFAs) production in laying hens. 16S rDNA sequencing showed strong differences between cecal microbiota of soybean (SD) and insect diet (ID) groups both in type and relative abundance (unweighted and weighted beta diversity) of microbial species. In particular, Bacteroides plebeius, Elusimicrobium minutum, Alkaliphilus transvaalensis, Christensenella minuta, Vallitalea guaymasensis and Flavonifractor plautii represented the principal contributors of changes in gut microbiota composition of ID group (FDR p-values < 0.05). Of these, F. plautii, C. minuta and A. transvaalensis have the potential to degrade the chitin's insect meal and correlated with the observed high levels of gut SCFAs produced in ID group. These microorganisms may thus connect the chitin degradation with high SCFAs production. Our results suggest H. illucens as a potential prebiotic by well feeding gut microbiota.


Gastrointestinal Microbiome/physiology , Insecta , Animal Feed , Animals , Chickens , Diet , Fatty Acids, Volatile/metabolism , Female
20.
Appl Environ Microbiol ; 83(19)2017 10 01.
Article En | MEDLINE | ID: mdl-28733284

We recently demonstrated that cow's milk fermented with the probiotic Lactobacillus paracasei CBA L74 (FM-CBAL74) reduces the incidence of respiratory and gastrointestinal tract infections in young children attending school. This effect apparently derives from a complex regulation of non-immune and immune protective mechanisms. We investigated whether FM-CBAL74 could regulate gut microbiota composition and butyrate production. We randomly selected 20 healthy children (12 to 48 months) from the previous randomized controlled trial, before (t0) and after 3 months (t3) of dietary treatment with FM-CBAL74 (FM) or placebo (PL). Fecal microbiota was profiled using 16S rRNA gene amplicon sequencing, and the fecal butyrate concentration was also measured. Microbial alpha and beta diversities were not significantly different between groups prior to treatment. FM-CBAL74 but not PL treatment increased the relative abundance of Lactobacillus Individual Blautia, Roseburia, and Faecalibacterium oligotypes were associated with FM-CBAL74 treatment and demonstrated correlative associations with immune biomarkers. Accordingly, PICRUSt analysis predicted an increase in the proportion of genes involved in butyrate production pathways, consistent with an increase in fecal butyrate observed only in the FM group. Dietary supplementation with FM-CBAL74 induces specific signatures in gut microbiota composition and stimulates butyrate production. These effects are associated with changes in innate and acquired immunity.IMPORTANCE The use of a fermented milk product containing the heat-killed probiotic strain Lactobacillus paracasei CBAL74 induces changes in the gut microbiota, promoting the development of butyrate producers. These changes in the gut microbiota composition correlate with increased levels of innate and acquired immunity biomarkers.


Bacteria/isolation & purification , Butyric Acid/metabolism , Gastrointestinal Microbiome , Lacticaseibacillus paracasei/metabolism , Probiotics/administration & dosage , Animals , Bacteria/classification , Bacteria/genetics , Cattle , Child, Preschool , Cultured Milk Products/analysis , Cultured Milk Products/microbiology , Female , Fermentation , Gastrointestinal Tract/microbiology , Humans , Infant , Lacticaseibacillus paracasei/chemistry , Male
...