Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27
1.
Cell Rep Med ; 5(5): 101549, 2024 May 21.
Article En | MEDLINE | ID: mdl-38703767

There is a compelling need for approaches to predict the efficacy of immunotherapy drugs. Tumor-on-chip technology exploits microfluidics to generate 3D cell co-cultures embedded in hydrogels that recapitulate simplified tumor ecosystems. Here, we present the development and validation of lung tumor-on-chip platforms to quickly and precisely measure ex vivo the effects of immune checkpoint inhibitors on T cell-mediated cancer cell death by exploiting the power of live imaging and advanced image analysis algorithms. The integration of autologous immunosuppressive FAP+ cancer-associated fibroblasts impaired the response to anti-PD-1, indicating that tumors-on-chips are capable of recapitulating stroma-dependent mechanisms of immunotherapy resistance. For a small cohort of non-small cell lung cancer patients, we generated personalized tumors-on-chips with their autologous primary cells isolated from fresh tumor samples, and we measured the responses to anti-PD-1 treatment. These results support the power of tumor-on-chip technology in immuno-oncology research and open a path to future clinical validations.


Immune Checkpoint Inhibitors , Lung Neoplasms , Precision Medicine , Programmed Cell Death 1 Receptor , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/immunology , Precision Medicine/methods , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/immunology , Lab-On-A-Chip Devices , Immunotherapy/methods , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Cell Line, Tumor
2.
Nat Immunol ; 25(5): 802-819, 2024 May.
Article En | MEDLINE | ID: mdl-38684922

Sepsis induces immune alterations, which last for months after the resolution of illness. The effect of this immunological reprogramming on the risk of developing cancer is unclear. Here we use a national claims database to show that sepsis survivors had a lower cumulative incidence of cancers than matched nonsevere infection survivors. We identify a chemokine network released from sepsis-trained resident macrophages that triggers tissue residency of T cells via CCR2 and CXCR6 stimulations as the immune mechanism responsible for this decreased risk of de novo tumor development after sepsis cure. While nonseptic inflammation does not provoke this network, laminarin injection could therapeutically reproduce the protective sepsis effect. This chemokine network and CXCR6 tissue-resident T cell accumulation were detected in humans with sepsis and were associated with prolonged survival in humans with cancer. These findings identify a therapeutically relevant antitumor consequence of sepsis-induced trained immunity.


Macrophages , Neoplasms , Sepsis , Humans , Sepsis/immunology , Macrophages/immunology , Female , Neoplasms/immunology , Neoplasms/therapy , Male , Receptors, CXCR6/metabolism , Animals , T-Lymphocytes/immunology , Receptors, CCR2/metabolism , Middle Aged , Mice , Aged , Chemokines/metabolism , Adult
3.
Front Immunol ; 14: 1205984, 2023.
Article En | MEDLINE | ID: mdl-37545498

Tumor-infiltrating lymphocytes (TIL) often include a substantial subset of CD8+ tissue-resident memory T (TRM) cells enriched in tumor-specific T cells. These TRM cells play a major role in antitumor immune response. They are identified on the basis of their expression of the CD103 (αE(CD103)ß7) and/or CD49a (α1(CD49a)ß1) integrins, and the C-type lectin CD69, which are involved in tissue residency. TRM cells express several T-cell inhibitory receptors on their surface but they nevertheless react strongly to malignant cells, exerting a strong cytotoxic function, particularly in the context of blocking interactions of PD-1 with PD-L1 on target cells. These TRM cells form stable conjugates with autologous tumor cells and interact with dendritic cells and other T cells within the tumor microenvironment to orchestrate an optimal in situ T-cell response. There is growing evidence to indicate that TGF-ß is essential for the formation and maintenance of TRM cells in the tumor, through the induction of CD103 expression on activated CD8+ T cells, and for the regulation of TRM effector functions through bidirectional integrin signaling. CD8+ TRM cells were initially described as a prognostic marker for survival in patients with various types of cancer, including ovarian, lung and breast cancers and melanoma. More recently, these tumor-resident CD8+ T cells have been shown to be a potent predictive biomarker of the response of cancer patients to immunotherapies, including therapeutic cancer vaccines and immune checkpoint blockade. In this review, we will highlight the major characteristics of tumor TRM cell populations and the possibilities for their exploitation in the design of more effective immunotherapy strategies for cancer.


CD8-Positive T-Lymphocytes , Neoplasms , Humans , Integrin alpha1/metabolism , Memory T Cells , Immunologic Memory , Neoplasms/metabolism , Biomarkers/metabolism , Immunotherapy , Tumor Microenvironment
4.
Vaccines (Basel) ; 10(5)2022 May 09.
Article En | MEDLINE | ID: mdl-35632496

Immunotherapy using immune checkpoint modulators has revolutionized the oncology field, emerging as a new standard of care for multiple indications, including non-small cell lung cancer (NSCLC). However, prognosis for patients with lung cancer is still poor. Although immunotherapy is highly effective in some cases, not all patients experience significant or durable responses, and further strategies are needed to improve outcomes. Therapeutic cancer vaccines are designed to exploit the body's immune system to activate long-lasting memory against tumor cells that ensure tumor regression, with minimal toxicity. A unique feature of cancer vaccines lies in their complementary approach to boost antitumor immunity that could potentially act synergistically with immune checkpoint inhibitors (ICIs). However, single-line immunization against tumor epitopes with vaccine-based therapeutics has been disappointingly unsuccessful, to date, in lung cancer. The high level of success of several recent vaccines against SARS-CoV-2 has highlighted the evolving advances in science and technology in the vaccines field, raising hope that this strategy can be successfully applied to cancer treatments. In this review, we describe the biology behind the cancer vaccines, and discuss current evidence for the different types of therapeutic cancer vaccines in NSCLC, including their mechanisms of action, current clinical development, and future strategies.

5.
J Immunother Cancer ; 10(4)2022 04.
Article En | MEDLINE | ID: mdl-35418483

BACKGROUND: Cancer stem cells (CSC) define a population of rare malignant cells endowed with 'stemness' properties, such as self-renewing, multipotency and tumorigenicity. They are responsible for tumor initiation and progression, and could be associated with resistance to immunotherapies by negatively regulating antitumor immune response and acquiring molecular features enabling escape from CD8 T-cell immunity. However, the immunological hallmarks of human lung CSC and their potential interactions with resident memory T (TRM) cells within the tumor microenvironment have not been investigated. METHODS: We generated a non-small cell lung cancer model, including CSC line and clones, and autologous CD8+CD103+ TRM and CD8+CD103- non-TRM clones, to dissect out immune properties of CSC and their susceptibility to specific T-cell-mediated cytotoxic activity. RESULTS: Unlike their parental tumor cells, lung CSC are characterized by the initiation of an epithelial-to-mesenchymal transition program defined by upregulation of the SNAIL1 transcription factor and downregulation of phosphorylated-GSK-3ß and cell surface E-cadherin. Acquisition of a CSC profile results in partial resistance to TRM-cell-mediated cytotoxicity, which correlates with decreased surface expression of the CD103 ligand E-cadherin and human leukocyte antigen-A2-neoepitope complexes. On the other hand, CSC gained expression of intercellular adhesion molecule (ICAM)-1 and thereby sensitivity to leukocyte function-associated antigen (LFA)-1-dependent non-TRM-cell-mediated killing. Cytotoxicity is inhibited by anti-ICAM-1 and anti-major histocompatibility complex class I neutralizing antibodies further emphasizing the role of LFA-1/ICAM-1 interaction in T-cell receptor-dependent lytic function. CONCLUSION: Our data support the rational design of immunotherapeutic strategies targeting CSC to optimize their responsiveness to local CD8+CD103+ TRM cells for more efficient anticancer treatments.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , CD8-Positive T-Lymphocytes , Cadherins/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Immunologic Memory , Lung , Lymphocytes, Tumor-Infiltrating , Neoplastic Stem Cells , Tumor Microenvironment
6.
Explor Target Antitumor Ther ; 3(6): 746-762, 2022.
Article En | MEDLINE | ID: mdl-36654823

Major advances in cancer treatment have emerged with the introduction of immunotherapies using blocking antibodies that target T-cell inhibitory receptors, such as programmed death-1 (PD-1) and cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), known as immune checkpoints. However, most cancer patients do not respond to immune checkpoint blockade (ICB) therapies, suggesting the development of resistance mechanisms associated with either an insufficient number of preexisting tumor-specific T-cell precursors and/or inappropriate T-cell reactivation. To broaden clinical benefit, anti-PD-1/PD-1 ligand (PD-L1) neutralizing antibodies have been combined with therapeutic cancer vaccines based on non-mutant and/or mutant tumor antigens, to stimulate and expand tumor-specific T lymphocytes. Although these combination treatments achieve the expected goal in some patients, relapse linked to alterations in antigen presentation machinery (APM) of cancer cells often occurs leading to tumor escape from CD8 T-cell immunity. Remarkably, an alternative antigenic peptide repertoire, referred to as T-cell epitopes associated with impaired peptide processing (TEIPP), arises on these malignant cells with altered APM. TEIPP are derived from ubiquitous non-mutant self-proteins and represent a unique resource to target immune-edited tumors that have acquired resistance to cytotoxic T lymphocytes (CTLs) related to defects in transporter associated with antigen processing (TAP) and possibly also to ICB. The present review discusses tumor-associated antigens (TAAs) and mutant neoantigens and their use as targets in peptide- and RNA-based therapeutic cancer vaccines. Finally, this paper highlights TEIPP as a promising immunogenic non-mutant neoantigen candidates for active cancer immunotherapy and combination with TAA and mutant neoantigens. Combining these polyepitope cancer vaccines with ICB would broaden T-cell specificity and reinvigorate exhausted antitumor CTL, resulting in the eradication of all types of neoplastic cells, including immune-escaped subtypes.

7.
Front Immunol ; 12: 692598, 2021.
Article En | MEDLINE | ID: mdl-34630382

Since its emergence at the end of 2019, SARS-CoV-2 has spread worldwide at a very rapid pace. While most infected individuals have an asymptomatic or mild disease, a minority, mainly the elderly, develop a severe disease that may lead to a fatal acute respiratory distress syndrome (ARDS). ARDS results from a highly inflammatory immunopathology process that includes systemic manifestations and massive alveolar damages that impair gas exchange. The present review summarizes our current knowledge in the rapidly evolving field of SARS-CoV-2 immunopathology, emphasizing the role of specific T cell responses. Indeed, accumulating evidence suggest that while T-cell response directed against SARS-CoV-2 likely plays a crucial role in virus clearance, it may also participate in the immunopathology process that leads to ARDS.


COVID-19/immunology , Pulmonary Alveoli/pathology , SARS-CoV-2/physiology , T-Lymphocytes/immunology , Animals , Complement Activation , Disease Outbreaks , Humans , Immunity , Respiratory Distress Syndrome
8.
Nat Commun ; 12(1): 5209, 2021 09 01.
Article En | MEDLINE | ID: mdl-34471106

TGF-ß is secreted in the tumour microenvironment in a latent, inactive form bound to latency associated protein and activated by the integrin αV subunit. The activation of latent TGF-ß by cancer-cell-expressed αV re-shapes the tumour microenvironment, and this could affect patient responses to PD-1-targeting therapy. Here we show, using multiplex immunofluorescence staining in cohorts of anti-PD-1 and anti-PD-L1-treated lung cancer patients, that decreased expression of cancer cell αV is associated with improved immunotherapy-related, progression-free survival, as well as with an increased density of CD8+CD103+ tumour-infiltrating lymphocytes. Mechanistically, tumour αV regulates CD8 T cell recruitment, induces CD103 expression on activated CD8+ T cells and promotes their differentiation to granzyme B-producing CD103+CD69+ resident memory T cells via autocrine TGF-ß signalling. Thus, our work provides the underlying principle of targeting cancer cell αV for more efficient PD-1 checkpoint blockade therapy.


CD8-Positive T-Lymphocytes/immunology , Integrin alphaV/metabolism , Programmed Cell Death 1 Receptor/metabolism , Transforming Growth Factor beta/metabolism , Animals , Antigens, CD , B7-H1 Antigen , Cell Line, Tumor , Female , Humans , Immunotherapy , Integrin alpha Chains , Lung Neoplasms/drug therapy , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Mice, Inbred C57BL , Tumor Microenvironment
9.
STAR Protoc ; 2(1): 100267, 2021 03 19.
Article En | MEDLINE | ID: mdl-33490983

CD103+CD8+ tumor-resident memory T cells (TRM) are important components of anti-tumor immunity. However, their role in response to cancer immunotherapy is not fully understood. The protocol describes how to isolate CD8+ T cells and autologous tumor cells from human lung tumors to study the functional activities of CD8+ T cells. Tumors are heterogeneous in terms of the quantity and quality of immune cell types, so the yield of TRM cells depends on the features of the tumor. For complete details on the use and execution of this protocol, please refer to Corgnac et al. (2020).


CD8-Positive T-Lymphocytes/immunology , Cell Separation , Lung Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Memory T Cells/immunology , Tumor Microenvironment/immunology , Humans
10.
Cell Rep Med ; 1(7): 100127, 2020 10 20.
Article En | MEDLINE | ID: mdl-33205076

Accumulation of CD103+CD8+ resident memory T (TRM) cells in human lung tumors has been associated with a favorable prognosis. However, the contribution of TRM to anti-tumor immunity and to the response to immune checkpoint blockade has not been clearly established. Using quantitative multiplex immunofluorescence on cohorts of non-small cell lung cancer patients treated with anti-PD-(L)1, we show that an increased density of CD103+CD8+ lymphocytes in immunotherapy-naive tumors is associated with greatly improved outcomes. The density of CD103+CD8+ cells increases during immunotherapy in most responder, but not in non-responder, patients. CD103+CD8+ cells co-express CD49a and CD69 and display a molecular profile characterized by the expression of PD-1 and CD39. CD103+CD8+ tumor TRM, but not CD103-CD8+ tumor-infiltrating counterparts, express Aiolos, phosphorylated STAT-3, and IL-17; demonstrate enhanced proliferation and cytotoxicity toward autologous cancer cells; and frequently display oligoclonal expansion of TCR-ß clonotypes. These results explain why CD103+CD8+ TRM are associated with better outcomes in anti-PD-(L)1-treated patients.


Antineoplastic Agents, Immunological/therapeutic use , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Non-Small-Cell Lung/immunology , Lung Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Programmed Cell Death 1 Receptor/immunology , Antigens, CD/genetics , Antigens, CD/immunology , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , CD8 Antigens/genetics , CD8 Antigens/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/mortality , Cytotoxicity, Immunologic/drug effects , Gene Expression Regulation , Humans , Ikaros Transcription Factor/genetics , Ikaros Transcription Factor/immunology , Immunologic Memory , Immunotherapy/methods , Integrin alpha Chains/genetics , Integrin alpha Chains/immunology , Interleukin-17/genetics , Interleukin-17/immunology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Lymphocyte Activation/drug effects , Lymphocyte Count , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/pathology , Phosphorylation , Prognosis , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/genetics , Retrospective Studies , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/immunology , Signal Transduction , Survival Analysis , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
11.
Methods Enzymol ; 632: 521-543, 2020.
Article En | MEDLINE | ID: mdl-32000913

Dendritic cells (DCs) are professional antigen-presenting cells, which are optimal for the priming of a T cell response against pathogens and tumors. Therefore, many efforts are made to develop therapeutic cancer vaccines which preferentially target the antigen to DC subsets. To this aim, we developed two types of recombinant fusion proteins, which favor antigen delivery to pro-inflammatory DCs as well as the crosstalk between specialized subpopulations of DCs. The first approach combines peptide/CpG vaccination with the recruitment of iNKT cells to the tumor site via CD1d-antitumor scFv fusion proteins. The second approach is targeting the tumor antigen to cross-presenting Xcr1+ DCs via a fusion protein made of Xcl1 fused to a synthetic long peptide followed by an IgG1 Fc fragment. Both strategies allow a potent tumor-specific CD8 T cell response associated with tumor regression or tumor growth delay depending on the model. In the case of iNKT cell activation, the strategy relies on a strong IL-12 release by splenic DCs, while in the second case, the T cell response is strictly dependent on the presence of Xcr1+ cross-presenting DCs.


Cancer Vaccines/therapeutic use , Dendritic Cells/immunology , Neoplasms/therapy , Animals , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/immunology , Cross-Priming , HEK293 Cells , Humans , Killer Cells, Natural/immunology , Mice, Inbred C57BL , Neoplasms/immunology , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/therapeutic use
12.
Cancer Immunol Res ; 7(11): 1789-1802, 2019 Nov.
Article En | MEDLINE | ID: mdl-31488404

Immune resistance may arise from both genetic instability and tumor heterogeneity. Microenvironmental stresses such as hypoxia and various resistance mechanisms promote carcinoma cell plasticity. AXL, a member of the TAM (Tyro3, Axl, and Mer) receptor tyrosine kinase family, is widely expressed in human cancers and increasingly recognized for its role in cell plasticity and drug resistance. To investigate mechanisms of immune resistance, we studied multiple human lung cancer clones derived from a model of hypoxia-induced tumor plasticity that exhibited mesenchymal or epithelial features. We demonstrate that AXL expression is increased in mesenchymal lung cancer clones. Expression of AXL in the cells correlated with increased cancer cell-intrinsic resistance to both natural killer (NK)- and cytotoxic T lymphocyte (CTL)-mediated killing. A small-molecule targeting AXL sensitized mesenchymal lung cancer cells to cytotoxic lymphocyte-mediated killing. Mechanistically, we showed that attenuation of AXL-dependent immune resistance involved a molecular network comprising NF-κB activation, increased ICAM1 expression, and upregulation of ULBP1 expression coupled with MAPK inhibition. Higher ICAM1 and ULBP1 tumor expression correlated with improved patient survival in two non-small cell lung cancer (NSCLC) cohorts. These results reveal an AXL-mediated immune-escape regulatory pathway, suggest AXL as a candidate biomarker for tumor resistance to NK and CTL immunity, and support AXL targeting to optimize immune response in NSCLC.


Killer Cells, Natural/immunology , Lung Neoplasms/immunology , Proto-Oncogene Proteins/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , T-Lymphocytes, Cytotoxic/immunology , Tumor Escape/drug effects , Antineoplastic Agents/pharmacology , Cytotoxicity, Immunologic , Epithelial-Mesenchymal Transition/drug effects , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Gene Expression Regulation, Neoplastic , Humans , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/immunology , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/immunology , Signal Transduction/drug effects , Survival Analysis , Tumor Cells, Cultured , Axl Receptor Tyrosine Kinase
13.
Nat Commun ; 10(1): 3345, 2019 07 26.
Article En | MEDLINE | ID: mdl-31350404

Neuropilin-1 (Nrp-1) is a marker for murine CD4+FoxP3+ regulatory T (Treg) cells, a subset of human CD4+ Treg cells, and a population of CD8+ T cells infiltrating certain solid tumours. However, whether Nrp-1 regulates tumour-specific CD8 T-cell responses is still unclear. Here we show that Nrp-1 defines a subset of CD8+ T cells displaying PD-1hi status and infiltrating human lung cancer. Interaction of Nrp-1 with its ligand semaphorin-3A inhibits migration and tumour-specific lytic function of cytotoxic T lymphocytes. In vivo, Nrp-1+PD-1hi CD8+ tumour-infiltrating lymphocytes (TIL) in B16F10 melanoma are enriched for tumour-reactive T cells exhibiting an exhausted state, expressing Tim-3, LAG-3 and CTLA-4 inhibitory receptors. Anti-Nrp-1 neutralising antibodies enhance the migration and cytotoxicity of Nrp-1+PD-1hi CD8+ TIL ex vivo, while in vivo immunotherapeutic blockade of Nrp-1 synergises with anti-PD-1 to enhance CD8+ T-cell proliferation, cytotoxicity and tumour control. Thus, Nrp-1 could be a target for developing combined immunotherapies.


CD8-Positive T-Lymphocytes/immunology , Immunotherapy , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Neuropilin-1/immunology , Animals , Cell Movement , Female , Humans , Immunity, Cellular , Lung Neoplasms/genetics , Lung Neoplasms/physiopathology , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Mice, Inbred C57BL , Neuropilin-1/genetics , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , Semaphorin-3A/immunology , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/immunology
14.
Nat Commun ; 9(1): 5097, 2018 11 30.
Article En | MEDLINE | ID: mdl-30504837

Tumours often evade CD8 T-cell immunity by downregulating TAP. T-cell epitopes associated with impaired peptide processing are immunogenic non-mutated neoantigens that emerge during tumour immune evasion. The preprocalcitonin (ppCT)16-25 neoepitope belongs to this category of antigens. Here we show that most human lung tumours display altered expression of TAP and frequently express ppCT self-antigen. We also show that ppCT includes HLA-A2-restricted epitopes that are processed by TAP-independent and -dependent pathways. Processing occurs in either the endoplasmic reticulum, by signal peptidase and signal peptide peptidase, or in the cytosol after release of a signal peptide precursor or retrotranslocation of a procalcitonin substrate by endoplasmic-reticulum-associated degradation. Remarkably, ppCT peptide-based immunotherapy induces efficient T-cell responses toward antigen processing and presenting machinery-impaired tumours transplanted into HLA-A*0201-transgenic mice and in NOD-scid-Il2rγnull mice adoptively transferred with human PBMC. Thus, ppCT-specific T lymphocytes are promising effectors for treatment of tumours that have escaped immune recognition.


Calcitonin/metabolism , Epitopes, T-Lymphocyte/metabolism , Leukocytes, Mononuclear/metabolism , Protein Precursors/metabolism , Animals , Cell Line, Tumor , Female , HLA-A Antigens/immunology , HLA-A Antigens/metabolism , Healthy Volunteers , Humans , In Vitro Techniques , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Male , Mice , Mice, Inbred NOD , Mice, Transgenic , Tumor Escape/immunology , Tumor Escape/physiology
15.
J Immunother Cancer ; 6(1): 87, 2018 09 04.
Article En | MEDLINE | ID: mdl-30180905

CD8+ T lymphocytes are the major anti-tumor effector cells. Most cancer immunotherapeutic approaches seek to amplify cytotoxic T lymphocytes (CTL) specific to malignant cells. A recently identified subpopulation of memory CD8+ T cells, named tissue-resident memory T (TRM) cells, persists in peripheral tissues and does not recirculate. This T-cell subset is considered an independent memory T-cell lineage with a specific profile of transcription factors, including Runx3+, Notch+, Hobit+, Blimp1+, BATF+, AHR+, EOMESneg and Tbetlow. It is defined by expression of CD103 (αE(CD103)ß7) and CD49a (VLA-1 or α1ß1) integrins and C-type lectin CD69, which are most likely involved in retention of TRM cells in non-lymphoid tissues, including solid tumors. CD103 binds to the epithelial cell marker E-cadherin, thereby favoring the location and retention of TRM in epithelial tumor regions in close contact with malignant cells. The CD103-E-cadherin interaction is required for polarized exocytosis of lytic granules, in particular, when ICAM-1 expression on cancer cells is missing, leading to target cell death. TRM cells also express high levels of granzyme B, IFNγ and TNFα, supporting their cytotoxic features. Moreover, the local route of immunization targeting tissue dendritic cells (DC), and the presence of environmental factors (i.e. TGF-ß, IL-33 and IL-15), promote differentiation of this T-cell subtype. In both spontaneous tumor models and engrafted tumors, natural TRM cells or cancer-vaccine-induced TRM directly control tumor growth. In line with these results, TRM infiltration into various human cancers, including lung cancer, are correlated with better clinical outcome in both univariate and multivariate analyses independently of CD8+ T cells. TRM cells also predominantly express checkpoint receptors such as PD-1, CTLA-4 and Tim-3. Blockade of PD-1 with neutralizing antibodies on TRM cells isolated from human lung cancer promotes cytolytic activity toward autologous tumor cells. Thus, TRM cells appear to represent important components in tumor immune surveillance. Their induction by cancer vaccines or other immunotherapeutic approaches may be critical for the success of these treatments. Several arguments, such as their close contact with tumor cells, dominant expression of checkpoint receptors and their recognition of cancer cells, strongly suggest that they may be involved in the success of immune checkpoint inhibitors in various cancers.


Immunity , Immunologic Memory , Neoplasms/immunology , T-Lymphocyte Subsets/immunology , Animals , Biomarkers , Humans , Immunologic Surveillance , Immunophenotyping , Immunotherapy , Lymphocyte Activation/immunology , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/therapy , Phenotype , Prognosis , Receptors, Immunologic/metabolism , T-Lymphocyte Subsets/metabolism , Treatment Outcome
16.
Front Immunol ; 9: 1904, 2018.
Article En | MEDLINE | ID: mdl-30158938

Cancer immunotherapy is aimed at stimulating tumor-specific cytotoxic T lymphocytes and their subsequent trafficking so that they may reach, and persist in, the tumor microenvironment, recognizing and eliminating malignant target cells. Thus, characterization of the phenotype and effector functions of CD8+ T lymphocytes infiltrating human solid tumors is essential for better understanding and manipulating the local antitumor immune response, and for defining their contribution to the success of current cancer immunotherapy approaches. Accumulating evidence indicates that a substantial subpopulation of CD3+CD8+ tumor-infiltrating lymphocytes are tissue resident memory T (TRM) cells, and is emerging as an activated tumor-specific T-cell subset. These TRM cells accumulate in various human cancer tissues, including non-small-cell lung carcinoma (NSCLC), ovarian and breast cancers, and are defined by expression of CD103 [αE(CD103)ß7] and/or CD49a [α1(CD49a)ß1] integrins, along with C-type lectin CD69, which most likely contribute to their residency characteristic. CD103 binds to the epithelial cell marker E-cadherin, thereby promoting retention of TRM cells in epithelial tumor islets and maturation of cytotoxic immune synapse with specific cancer cells, resulting in T-cell receptor (TCR)-dependent target cell killing. Moreover, CD103 integrin triggers bidirectional signaling events that cooperate with TCR signals to enable T-cell migration and optimal cytokine production. Remarkably, TRM cells infiltrating human NSCLC tumors also express inhibitory receptors such as programmed cell death-1, the neutralization of which, with blocking antibodies, enhances CD103-dependent TCR-mediated cytotoxicity toward autologous cancer cells. Thus, accumulation of TRM cells at the tumor site explains the more favorable clinical outcome, and might be associated with the success of immune checkpoint blockade in a fraction of cancer patients.


CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Immunity , Immunologic Memory , Neoplasms/immunology , Neoplasms/metabolism , Animals , Antigens, CD/metabolism , Biomarkers , Cytotoxicity, Immunologic , Humans , Integrin alpha Chains/metabolism , Lymphocyte Activation/immunology , Lymphocytes, Tumor-Infiltrating , Neoplasms/pathology , Neoplasms/therapy , Organ Specificity/immunology , Prognosis , Signal Transduction , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Tumor Microenvironment
18.
Front Immunol ; 9: 14, 2018.
Article En | MEDLINE | ID: mdl-29403496

Recent advances in cancer treatment have emerged from new immunotherapies targeting T-cell inhibitory receptors, including cytotoxic T-lymphocyte associated antigen (CTLA)-4 and programmed cell death (PD)-1. In this context, anti-CTLA-4 and anti-PD-1 monoclonal antibodies have demonstrated survival benefits in numerous cancers, including melanoma and non-small-cell lung carcinoma. PD-1-expressing CD8+ T lymphocytes appear to play a major role in the response to these immune checkpoint inhibitors (ICI). Cytotoxic T lymphocytes (CTL) eliminate malignant cells through recognition by the T-cell receptor (TCR) of specific antigenic peptides presented on the surface of cancer cells by major histocompatibility complex class I/beta-2-microglobulin complexes, and through killing of target cells, mainly by releasing the content of secretory lysosomes containing perforin and granzyme B. T-cell adhesion molecules and, in particular, lymphocyte-function-associated antigen-1 and CD103 integrins, and their cognate ligands, respectively, intercellular adhesion molecule 1 and E-cadherin, on target cells, are involved in strengthening the interaction between CTL and tumor cells. Tumor-specific CTL have been isolated from tumor-infiltrating lymphocytes and peripheral blood lymphocytes (PBL) of patients with varied cancers. TCRß-chain gene usage indicated that CTL identified in vitro selectively expanded in vivo at the tumor site compared to autologous PBL. Moreover, functional studies indicated that these CTL mediate human leukocyte antigen class I-restricted cytotoxic activity toward autologous tumor cells. Several of them recognize truly tumor-specific antigens encoded by mutated genes, also known as neoantigens, which likely play a key role in antitumor CD8 T-cell immunity. Accordingly, it has been shown that the presence of T lymphocytes directed toward tumor neoantigens is associated with patient response to immunotherapies, including ICI, adoptive cell transfer, and dendritic cell-based vaccines. These tumor-specific mutation-derived antigens open up new perspectives for development of effective second-generation therapeutic cancer vaccines.


Carcinoma, Non-Small-Cell Lung/therapy , Cytotoxicity, Immunologic/immunology , Lung Neoplasms/therapy , Lymphocytes, Tumor-Infiltrating/transplantation , Melanoma/therapy , T-Lymphocytes, Cytotoxic/transplantation , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/immunology , Humans , Immunotherapy, Adoptive , Lymphocytes, Tumor-Infiltrating/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes, Cytotoxic/immunology
19.
Cancer Res ; 77(24): 7072-7082, 2017 12 15.
Article En | MEDLINE | ID: mdl-29021139

CD8+/CD103+ tissue-resident memory T cells (TRM cells) accumulate in several human solid tumors, where they have been associated with a favorable prognosis. However, the role of CD103, the α subunit of the integrin αEß7 (also known as CD103), in the retention and functions of these TRM is undefined. In this report, we investigated the role of CD103 cytoplasmic domain and the focal adhesion-associated protein paxillin (Pxn) in downstream signaling and functional activities triggered through αE/CD103 chain. Binding to immobilized recombinant (r)E-cadherin-Fc of CD103 integrin expressed on tumor-specific CTL clones promotes phosphorylation of Pxn and Pyk2 and binding of Pxn to the αE/CD103 subunit tail. Inhibition of Pxn phosphorylation by the Src inhibitor saracatinib or its knockdown via shRNA dramatically altered adhesion and spreading of freshly isolated CD8+/CD103+ lung tumor-infiltrating lymphocytes and CD103+ tumor-specific CTL clones. Inhibition of Pxn phosphorylation with saracatinib in these CTL clones also severely compromised their functional activities toward autologous tumor cells. Using Jurkat T cells as a model to study CD103 integrin activation, we demonstrated a key role of serine residue S1163 of the αE chain intracellular domain in polarization of CD103 and recruitment of lysosomes and Pxn at the contact zone of T lymphocytes with rE-cadherin-Fc-coated beads. Overall, our results show how Pxn binding to the CD103 cytoplasmic tail triggers αEß7 integrin outside-in signaling that promotes CD8+ T-cell migratory behavior and effector functions. These results also explain the more favorable prognosis associated with retention of TRM cells in the tumor microenvironment. Cancer Res; 77(24); 7072-82. ©2017 AACR.


Antigens, CD/metabolism , CD8-Positive T-Lymphocytes , Cell Adhesion , Cytotoxicity, Immunologic/physiology , Integrin alpha Chains/metabolism , Lymphocytes, Tumor-Infiltrating , Paxillin/metabolism , Antigens, CD/chemistry , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Cytoplasm/metabolism , HEK293 Cells , Humans , Immunologic Memory/physiology , Integrin alpha Chains/chemistry , Jurkat Cells , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Tumor Microenvironment/immunology
20.
Oncoimmunology ; 6(9): e1339855, 2017.
Article En | MEDLINE | ID: mdl-28932640

Vaccines designed to abrogate the tolerance of tumor self-antigens and amplify cytotoxic CD8+ T cells (CTLs) have promise for the treatment of cancer. Type I natural killer (NKT) cells have attracted considerable interest in the cancer therapy field. In the current study, we have exploited the unique ability of NKT cells to serve as T-helper cells to license dendritic cells (DCs) for cross priming with the aim to generate efficient CTL antitumor responses. To this end, we designed a nanoparticle-based vaccine to target cross-priming DCs via the Clec9a endocytic pathway. Our results showed for the first time that simultaneous co-delivery of the NKT agonist α-galactosylceramide and tumor self-antigens (Trp2 and gp100) to CD8α+ DCs promotes strong antitumor responses in prophylactic and therapeutic settings (advanced solid tumor model in the mouse). We attributed the vaccine's therapeutic effects to NKT cells (but not to T-helper lymphocytes) and CD8+ T cells. Efficacy was correlated with an elevated ratio between tumor antigen-specific CD8+ T cells and regulatory CD4+ T lymphocytes within the tumor. The nanoparticle-based vaccine actively targeted human CLEC9A-expressing BDCA3+ DCs - the equivalent of murine cross-priming CD8α+ DCs - and induced a strong expansion of effector memory tumor self-antigen (Melan -A)-specific CD8+ T cells from peripheral blood mononuclear cells sourced from healthy donors and melanoma patients. Together, our result shed light on novel therapeutic approaches for controlling tumor development.

...