Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
NPJ Vaccines ; 9(1): 98, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38830899

A recombinant, replication-defective, adenovirus-vectored vaccine expressing the H surface glycoprotein of peste des petits ruminants virus (PPRV) has previously been shown to protect goats from challenge with wild-type PPRV at up to 4 months post vaccination. Here, we present the results of a longer-term trial of the protection provided by such a vaccine, challenging animals at 6, 9, 12 and 15 months post vaccination. Vaccinated animals developed high levels of anti-PPRV H protein antibodies, which were virus-neutralising, and the level of these antibodies was maintained for the duration of the trial. The vaccinated animals were largely protected against overt clinical disease from the challenge virus. Although viral genome was intermittently detected in blood samples, nasal and/or ocular swabs of vaccinated goats post challenge, viral RNA levels were significantly lower compared to unvaccinated control animals and vaccinated goats did not appear to excrete live virus. This protection, like the antibody response, was maintained at the same level for at least 15 months after vaccination. In addition, we showed that animals that have been vaccinated with the adenovirus-based vaccine can be revaccinated with the same vaccine after 12 months and showed an increased anti-PPRV antibody response after this boost vaccination. Such vaccines, which provide a DIVA capability, would therefore be suitable for use when the current live attenuated PPRV vaccines are withdrawn at the end of the ongoing global PPR eradication campaign.

2.
Viruses ; 16(4)2024 04 03.
Article En | MEDLINE | ID: mdl-38675899

Lumpy skin disease virus (LSDV) is a member of the capripoxvirus (CPPV) genus of the Poxviridae family. LSDV is a rapidly emerging, high-consequence pathogen of cattle, recently spreading from Africa and the Middle East into Europe and Asia. We have sequenced the whole genome of historical LSDV isolates from the Pirbright Institute virus archive, and field isolates from recent disease outbreaks in Sri Lanka, Mongolia, Nigeria and Ethiopia. These genome sequences were compared to published genomes and classified into different subgroups. Two subgroups contained vaccine or vaccine-like samples ("Neethling-like" clade 1.1 and "Kenya-like" subgroup, clade 1.2.2). One subgroup was associated with outbreaks of LSD in the Middle East/Europe (clade 1.2.1) and a previously unreported subgroup originated from cases of LSD in west and central Africa (clade 1.2.3). Isolates were also identified that contained a mix of genes from both wildtype and vaccine samples (vaccine-like recombinants, grouped in clade 2). Whole genome sequencing and analysis of LSDV strains isolated from different regions of Africa, Europe and Asia have provided new knowledge of the drivers of LSDV emergence, and will inform future disease control strategies.


Genome, Viral , Lumpy Skin Disease , Lumpy skin disease virus , Phylogeny , Whole Genome Sequencing , Lumpy skin disease virus/genetics , Lumpy skin disease virus/classification , Lumpy skin disease virus/isolation & purification , Animals , Lumpy Skin Disease/virology , Lumpy Skin Disease/epidemiology , Cattle , Africa, Central/epidemiology , Africa, Western/epidemiology , Disease Outbreaks
3.
Front Immunol ; 15: 1328820, 2024.
Article En | MEDLINE | ID: mdl-38357545

Introduction: Bluetongue virus (BTV) is an arthropod-borne Orbivirus that is almost solely transmitted by Culicoides biting midges and causes a globally important haemorrhagic disease, bluetongue (BT), in susceptible ruminants. Infection with BTV is characterised by immunosuppression and substantial lymphopenia at peak viraemia in the host. Methods: In this study, the role of cell-mediated immunity and specific T-cell subsets in BTV pathogenesis, clinical outcome, viral dynamics, immune protection, and onwards transmission to a susceptible Culicoides vector is defined in unprecedented detail for the first time, using an in vivo arboviral infection model system that closely mirrors natural infection and transmission of BTV. Individual circulating CD4+, CD8+, or WC1+ γδ T-cell subsets in sheep were depleted through the administration of specific monoclonal antibodies. Results: The absence of cytotoxic CD8+ T cells was consistently associated with less severe clinical signs of BT, whilst the absence of CD4+ and WC1+ γδ T cells both resulted in an increased clinical severity. The absence of CD4+ T cells also impaired both a timely protective neutralising antibody response and the production of IgG antibodies targeting BTV non-structural protein, NS2, highlighting that the CD4+ T-cell subset is important for a timely protective immune response. T cells did not influence viral replication characteristics, including onset/dynamics of viraemia, shedding, or onwards transmission of BTV to Culicoides. We also highlight differences in T-cell dependency for the generation of immunoglobulin subclasses targeting BTV NS2 and the structural protein, VP7. Discussion: This study identifies a diverse repertoire of T-cell functions during BTV infection in sheep, particularly in inducing specific anti-viral immune responses and disease manifestation, and will support more effective vaccination strategies.


Arboviruses , Bluetongue virus , Bluetongue , Ceratopogonidae , Sheep , Animals , Livestock , Viremia , CD8-Positive T-Lymphocytes , Ruminants , T-Lymphocyte Subsets , Bluetongue/prevention & control , Ceratopogonidae/physiology
4.
Transbound Emerg Dis ; 69(4): e336-e343, 2022 Jul.
Article En | MEDLINE | ID: mdl-34448540

Lumpy skin disease virus (LSDV) is an emerging poxviral pathogen of cattle that is currently spreading throughout Asia. The disease situation is of high importance for farmers and policy makers in Asia. In October 2020, feral cattle in Hong Kong developed multi-focal cutaneous nodules consistent with lumpy skin disease (LSD). Gross and histological pathology further supported the diagnosis and samples were sent to the OIE Reference Laboratory at The Pirbright Institute for confirmatory testing. LSDV was detected using quantitative polymerase chain reaction (qPCR) and additional molecular analyses. This is the first report of LSD in Hong Kong. Whole genome sequencing (WGS) of the strain LSDV/Hong Kong/2020 and phylogenetic analysis were carried out in order to identify connections to previous outbreaks of LSD, and better understand the drivers of LSDV emergence. Analysis of the 90 core poxvirus genes revealed LSDV/Hong Kong/2020 was a novel strain most closely related to the live-attenuated Neethling vaccine strains of LSDV and more distantly related to wildtype LSDV isolates from Africa, the Middle East and Europe. Analysis of the more variable regions located towards the termini of the poxvirus genome revealed genes in LSDV/Hong Kong/2020 with different patterns of grouping when compared to previously published wildtype and vaccine strains of LSDV. This work reveals that the LSD outbreak in Hong Kong in 2020 was caused by a different strain of LSDV than the LSD epidemic in the Middle East and Europe in 2015-2018. The use of WGS is highly recommended when investigating LSDV disease outbreaks.


Cattle Diseases , Lumpy Skin Disease , Lumpy skin disease virus , Animals , Cattle , Cattle Diseases/epidemiology , Disease Outbreaks/veterinary , Hong Kong/epidemiology , Phylogeny , Vaccines, Attenuated
5.
J Virol Methods ; 274: 113730, 2019 12.
Article En | MEDLINE | ID: mdl-31513860

Peste des petits ruminants (PPR) is a viral disease of small ruminants that is caused by the PPR virus (PPRV) and is a significant burden on subsistence farmers across the developing world. Loop-mediated isothermal amplification (LAMP) provides cost-effective, rapid, specific and sensitive detection of nucleic acid and has been demonstrated to have field application for a range of viruses. We describe the development of a novel PPRV RT-LAMP assay utilising carefully-selected primers (targeting the N-gene) allowing for the detection of all known PPRV lineages in < 20 min. The assay was evaluated in comparison with a "gold standard" real-time RT-PCR assay using more than 200 samples, comprising samples from recent PPRV outbreaks, experimentally-infected goats, well-characterised cell culture isolates and samples collected from uninfected animals. The RT-LAMP assay demonstrated 100% diagnostic specificity and greater than 97% diagnostic sensitivity in comparison with the real-time RT-PCR assay. The limit of detection was between 0.3 and 0.8 log10 TCID50 ml-1 equating to a CT value of 31.52 to 33.48. In experimentally-infected animals, the RT-LAMP could detect PPRV as early as 4 days post infection (dpi) - before clinical signs were observed at 7 dpi. The RT-LAMP assay can support the global PPR eradication campaign.


Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Peste-des-Petits-Ruminants/diagnosis , Peste-des-petits-ruminants virus/isolation & purification , Animals , DNA Primers/genetics , Goat Diseases/diagnosis , Goats , Peste-des-petits-ruminants virus/genetics , Sensitivity and Specificity , Time Factors
6.
Transbound Emerg Dis ; 66(3): 1177-1185, 2019 May.
Article En | MEDLINE | ID: mdl-30661301

The outbreak of bluetongue virus (BTV) serotype 8 (BTV-8) during 2006-2009 in Europe was the most costly epidemic of the virus in recorded history. In 2015, a BTV-8 strain re-emerged in France which has continued to circulate since then. To examine anecdotal reports of reduced pathogenicity and transmission efficiency, we investigated the infection kinetics of a 2007 UK BTV-8 strain alongside the re-emerging BTV-8 strain isolated from France in 2017. Two groups of eight BTV-naïve British mule sheep were inoculated with 5.75 log10 TCID50 /ml of either BTV-8 strain. BTV RNA was detected by 2 dpi in both groups with peak viraemia occurring between 5-9 dpi. A significantly greater amount of BTV RNA was detected in sheep infected with the 2007 strain (6.0-8.8 log10 genome copies/ml) than the re-emerging BTV-8 strain (2.9-7.9 log10 genome copies/ml). All infected sheep developed BTV-specific antibodies by 9 dpi. BTV was isolated from 2 dpi to 12 dpi for 2007 BTV-8-inoculated sheep and from 5 to 10 dpi for sheep inoculated with the remerging BTV-8. In Culicoides sonorensis feeding on the sheep over the period 7-12 dpi, vector competence was significantly higher for the 2007 strain than the re-emerging strain. Both the proportion of animals showing moderate (as opposed to mild or no) clinical disease (6/8 vs. 1/8) and the overall clinical scores (median 5.25 vs. 3) were significantly higher in sheep infected with the 2007 strain, compared to those infected with the re-emerging strain. However, one sheep infected with the re-emerging strain was euthanized at 16 dpi having developed severe lameness. This highlights the potential of the re-emerging BTV-8 to still cause illness in naïve ruminants with concurrent costs to the livestock industry.


Antibodies, Viral/blood , Bluetongue virus/immunology , Bluetongue/epidemiology , Ceratopogonidae/virology , Communicable Diseases, Emerging/veterinary , Disease Outbreaks/veterinary , Insect Vectors/virology , Animals , Bluetongue/transmission , Bluetongue/virology , Bluetongue virus/genetics , Bluetongue virus/isolation & purification , Bluetongue virus/pathogenicity , Female , France/epidemiology , Serogroup , Sheep , Viremia/veterinary , Virulence
...